A Moment Map for the **T**-action and Commuting Toeplitz Operators acting on Bergman Spaces of the Bounded Symmetric Domain of Type IV

Monyrattanak Seng monyrattanak.seng@cimat.mx Adviser: Dr. Raúl Quiroga Barranco

Seminar on Toeplitz Operators, CINVESTAV December. 15 2021

REVIEW AND OBJECTIVE

• Bounded symmetric domain of type IV:

$$\mathcal{D}_{IV} = \frac{\text{SO}_0(n, 2)}{\text{SO}(n) \times \text{SO}(2)}$$

$$= \left\{ z = (z_1, \dots, z_n)^t \in \mathbb{C}^n \middle| ||z||^2 < 1 \text{ and } 1 + |z^t z|^2 - 2||z||^2 > 0 \right\}$$

has genus n.

REVIEW AND OBJECTIVE

• Bounded symmetric domain of type IV:

$$\mathcal{D}_{IV} = \frac{\text{SO}_0(n, 2)}{\text{SO}(n) \times \text{SO}(2)}$$

$$= \left\{ z = (z_1, \dots, z_n)^t \in \mathbb{C}^n \middle| ||z||^2 < 1 \text{ and } 1 + |z^t z|^2 - 2||z||^2 > 0 \right\}$$

has genus n.

• The group $SO(n) \times SO(2)$ acts on \mathcal{D}_{IV} by

$$(A,\theta)z = e^{i\theta}Az$$

where
$$A \in SO(n)$$
, $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \in SO(2)$ with $\theta \in \mathbb{R}$ and $z \in \mathcal{D}_{IV}$.

• This action yields the continuous unitary representation of $SO(n) \times SO(2)$ on $\mathcal{H}^2_{\lambda}(\mathcal{D}_{IV})$ given by

$$(\pi_{\lambda}(A,\theta)f)(z) = f((A,\theta)^{-1}z),$$

$$\forall (A, \theta) \in SO(n) \times SO(2), f \in \mathcal{H}^{2}_{\lambda}(\mathcal{D}_{IV}), z \in \mathcal{D}.$$

• This action yields the continuous unitary representation of $SO(n) \times SO(2)$ on $\mathcal{H}^2_{\lambda}(\mathcal{D}_{IV})$ given by

$$(\pi_{\lambda}(A,\theta)f)(z) = f((A,\theta)^{-1}z),$$

$$\forall (A, \theta) \in SO(n) \times SO(2), f \in \mathcal{H}^{2}_{\lambda}(\mathcal{D}_{IV}), z \in \mathcal{D}.$$

• For $\lambda > n-1$, the C^* -algebras $\mathscr{T}_{\lambda}(\mathcal{A}^{\mathrm{SO}(n) \times \mathrm{SO}(2)})$ generated by Toeplitz operators with $\mathrm{SO}(n) \times \mathrm{SO}(2)$ -invariant symbols are commutative.

Proposition 1

Let $\mathcal{D}={}^G\!\!/_K$ be a bounded symmetric domain with genus p and $H\leq K$ be closed. For every $\lambda>p-1$, the algebras $\mathscr{T}_\lambda(\mathcal{A}^H)$ are commutative if and only if

$$\mathcal{H}^2_{\lambda}(\mathcal{D}) = \bigoplus_{j \in J} V_j$$

decompose into inequivalent irrducible H-submodules. This decomposition is called the isotypic decomposition.

Proposition 1

Let $\mathcal{D}={}^G\!\!/_K$ be a bounded symmetric domain with genus p and $H\leq K$ be closed. For every $\lambda>p-1$, the algebras $\mathscr{T}_\lambda(\mathcal{A}^H)$ are commutative if and only if

$$\mathcal{H}^2_{\lambda}(\mathcal{D}) = \bigoplus_{j \in J} V_j$$

decompose into inequivalent irrducible H-submodules. This decomposition is called the isotypic decomposition.

When H=K, the corresponding Toeplitz operators T_a , $a\in\mathcal{A}^K$ are simultaneously diagonalizable. $T_a:\bigoplus_{j\in J}V_j\to\bigoplus_{j\in J}V_j$

$$T_{\mathbf{A}} = \begin{pmatrix} v_1 & v_2 & \cdots \\ c_1(T_{\mathbf{A}}) \operatorname{Id}_{V_1} & 0 & & \\ 0 & c_2(T_{\mathbf{A}}) \operatorname{Id}_{V_2} & \cdot & \\ & & \ddots & \\ \vdots & & & \vdots \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \end{pmatrix}$$

 $c_j(T_a)$: spectrum of T_a .

Let $H \leq SO(n) \times SO(2)$.

- Moment Map Symbols or μ^H -symbol: $a=f\circ \mu^H$ where μ^H is a moment map for the H-action on \mathcal{D}_{IV} and f is any function such that $f\circ \mu^H\in L^\infty(\mathcal{D}_{IV})$.
- The set of μ^H -symbol: \mathcal{A}^{μ^H} .
- Corresponding C^* -algebras: $\mathscr{T}_{\lambda}(\mathcal{A}^{\mu^H})$ for every $\lambda > n-1$.

Let $H \leq SO(n) \times SO(2)$.

- Moment Map Symbols or μ^H -symbol: $a = f \circ \mu^H$ where μ^H is a moment map for the H-action on \mathcal{D}_{IV} and f is any function such that $f \circ \mu^H \in L^\infty(\mathcal{D}_{IV})$.
- The set of μ^H -symbol: \mathcal{A}^{μ^H} .
- Corresponding C^* -algebras: $\mathscr{T}_{\lambda}(\mathcal{A}^{\mu^H})$ for every $\lambda > n-1$.

Objective: Find a subgroup $H \leq \mathrm{SO}(n) \times \mathrm{SO}(2)$ such that Toeplitz operators with μ^H -symbols generate commutative C^* -algebras for every $\lambda > n-1$.

CONTENTS

- lacktriangle Moment Map for the **T**-action on \mathcal{D}_{IV}
 - ullet The Kähler form of \mathcal{D}_{IV}
 - Moment Map for the T-action
- **2** Toeplitz Operators with $\mu^{\mathrm{SO}(2)}$ -symbols on \mathcal{D}_{IV}
 - ullet Toeplitz Operators with $\mu^{\mathrm{SO}(2)}$ -symbols
 - Spectral Integral Formulas

Moment Map for the ${f T}$ -action on ${\cal D}_{IV}$

The Kähler form of \mathcal{D}_{IV}

• The bounded symmetric domain of type IV has a realization

$$\mathcal{D}_{IV} = \left\{ z = (z_1, \dots, z_n)^t \in \mathbb{C}^n \middle| \|z\|^2 < 1 \text{ and } 1 + |z^t z|^2 - 2\|z\|^2 > 0 \right\}$$

The Kähler form of \mathcal{D}_{IV}

• The bounded symmetric domain of type IV has a realization

$$\mathcal{D}_{IV} = \left\{ z = (z_1, \dots, z_n)^t \in \mathbb{C}^n \middle| \|z\|^2 < 1 \text{ and } 1 + |z^t z|^2 - 2\|z\|^2 > 0 \right\}$$

Bergman Kernel:

$$B(z,z) = (1 - 2||z||^2 + |z^t z|^2)^{-n} := \Delta(z)^{-n}$$

where
$$\Delta(z) = 1 - 2||z||^2 + |z^t z|^2$$
.

Identifying
$$\mathbb{C}^n\cong\mathbb{R}^{2n}$$
 by

$$(z_1,\cdots,z_n)\mapsto (x_1,\cdots,x_n,y_1,\cdots,y_n)$$

where
$$z_j = x_j + iy_j \in \mathbb{C}$$
.

Identifying $\mathbb{C}^n\cong\mathbb{R}^{2n}$ by

$$(z_1,\cdots,z_n)\mapsto (x_1,\cdots,x_n,y_1,\cdots,y_n)$$

where $z_j = x_j + iy_j \in \mathbb{C}$.

 \bullet \mathcal{D}_{IV} is an almost complex manifold with an almost complex structure J.

Identifying $\mathbb{C}^n \cong \mathbb{R}^{2n}$ by

$$(z_1,\cdots,z_n)\mapsto (x_1,\cdots,x_n,y_1,\cdots,y_n)$$

where $z_j = x_j + iy_j \in \mathbb{C}$.

- \mathcal{D}_{IV} is an almost complex manifold with an almost complex structure J.
- ullet The kernel function B induces the Riemannian metric g that is J-invariant, i.e.

$$g(J\cdot, J\cdot) = g(\cdot, \cdot).$$

This implies that (\mathcal{D}_{IV}, J, g) is a Hermitian manifold and a Riemannian metric g is referred to as a Hermitian metric.

Identifying $\mathbb{C}^n \cong \mathbb{R}^{2n}$ by

$$(z_1,\cdots,z_n)\mapsto (x_1,\cdots,x_n,y_1,\cdots,y_n)$$

where $z_i = x_i + iy_i \in \mathbb{C}$.

- \bullet $\,\mathcal{D}_{IV}$ is an almost complex manifold with an almost complex structure $\,J_{\cdot}\,$
- The kernel function B induces the Riemannian metric g that is J-invariant, i.e.

$$g(J\cdot, J\cdot) = g(\cdot, \cdot).$$

This implies that (\mathcal{D}_{IV}, J, g) is a Hermitian manifold and a Riemannian metric g is referred to as a Hermitian metric.

• Associated to the Hermitian metric g, there is a non-degenerate closed 2-form ω given by

$$\omega(\cdot, \cdot) = g(J \cdot, \cdot)$$

and is compatible with J, i.e.

$$\omega(J(\cdot), J(\cdot)) = \omega(\cdot, \cdot).$$

• The 2-form ω is called the **Kähler form**.

Its complexified $\omega_z:T_z^\mathbb{C}\mathcal{D}_{IV}\times T_z^\mathbb{C}\mathcal{D}_{IV}\to\mathbb{C}$ is given by

$$\omega_z = i \sum_{j,k=1}^n g_{jk}(z) dz_j \wedge d\overline{z}_k$$

where

$$dz_j \wedge d\overline{z}_k = dz_j \otimes d\overline{z}_k - d\overline{z}_k \otimes dz_j.$$

for any $z \in \mathcal{D}_{IV}$.

• The 2-form ω is called the **Kähler form**. Its complexified $\omega_z: T_z^{\mathbb{C}} \mathcal{D}_{IV} \times T_z^{\mathbb{C}} \mathcal{D}_{IV} \to \mathbb{C}$ is given by

$$\omega_z = i \sum_{j,k=1}^n g_{jk}(z) dz_j \wedge d\overline{z}_k$$

where

$$dz_j \wedge d\overline{z}_k = dz_j \otimes d\overline{z}_k - d\overline{z}_k \otimes dz_j.$$

for any $z \in \mathcal{D}_{IV}$.

• For simplicity, we choose $g_{jk}(z)$ such that

$$g_{jk}(z) = \frac{1}{2n} \frac{\partial^2}{\partial z_i \partial \overline{z}_k} \log B(z, z).$$

Explicitly,

$$g_{jk}(z) = \frac{\Delta(z)(\delta_{jk} - 2z_j\overline{z}_k) + 2(\overline{z}_j - z_j(\overline{z^t}z))(z_k - \overline{z}_k(z^tz))}{\Delta(z)^2}$$

and the Kähler form is then

$$\omega_z = i \sum_{j,k=1}^n \frac{\Delta(z)(\delta_{jk} - 2z_j\overline{z}_k) + 2(\overline{z}_j - z_j(\overline{z}^t\overline{z}))(z_k - \overline{z}_k(z^t\overline{z}))}{\Delta(z)^2} dz_j \wedge d\overline{z}_k$$

where $z \in \mathcal{D}_{IV}$ and $\Delta(z) = 1 - 2||z||^2 + |z^t z|^2$.

Moment Map for the \mathbf{T} -action

- H, h: Connected Lie group, Lie algebra.
 Assume that H acts smoothly on D_{IV}.
- ullet For every $X \in \mathfrak{h}$, there is a smooth vector field given by

$$X_z^{\sharp} = \frac{d}{dr} \Big|_{r=0} \exp(rX)z$$

for every $z \in \mathcal{D}_{IV}$.

• If we consider X^{\sharp} as a complex-valued function with component functions given by $X^{\sharp}=(f_1,\cdots,f_n)$, then the corresponding expression as a complex vector field is given by

$$X^{\sharp} = \sum_{i=1}^{n} \left(f_{j} \frac{\partial}{\partial z_{j}} + \overline{f}_{j} \frac{\partial}{\partial \overline{z}_{j}} \right).$$

Definition 1

Let H be a connected Lie group acting smoothly on \mathcal{D}_{IV} preserving ω , i.e. $\omega(dh(\cdot),dh(\cdot))=\omega(\cdot,\cdot)$ where $dh_z:T_z\mathcal{D}_{IV}\to T_{hz}\mathcal{D}_{IV}$ is the differential of the action for any $h\in H$ at $z\in\mathcal{D}_{IV}$. Let $\mathfrak h$ be the Lie algebra of H and $\mathfrak h^*$ be its real dual space. A moment map for the H-action on \mathcal{D}_{IV} is a smooth function

$$\mu: \mathcal{D}_{IV} \to \mathfrak{h}^*$$

that satisfies the following properties:

i. For every $X \in \mathfrak{h}$, the smooth function

$$\mu_X: \mathcal{D}_{IV} \to \mathbb{R}$$

defined by $\mu_X(z)=\langle \mu(z),X\rangle=\mu(z)(X)$ has Hamiltonian vector field given by X^{\sharp} . In other word, we have $X^{\sharp}=X_{\mu_X}$ for every $X\in\mathfrak{h}.$

ii. For every $h \in H$, we have

$$\mu \circ h = \mathrm{Ad}^*(h) \circ \mu$$

where Ad is the adjoint representation of H and $Ad^*(h)$ denotes the transpose transformation of $Ad(h)^{-1}$.

Observation 1

For every real-valued smooth function f on \mathcal{D}_{IV} , the Hamiltonian vector field associated to f is the smooth vector field X_f that satisfies $df = \omega(X_f,\cdot)$. Hence, the first condition in the above definition is equivalent to the requiring that μ_X satisfies

$$d\mu_X = \omega(X^{\sharp}, \cdot) \tag{1}$$

If H is an abelian Lie group, then $\mathrm{Ad}(h)=\mathrm{Id}_{\mathfrak{h}}$ for every $h\in H.$ Thus, the second condition is equivalent to H-invariance of $\mu,$ i.e.

$$\mu \circ h = \mu \text{ for all } h \in H.$$
 (2)

Suppose that $\mathcal{D}_{IV} \subseteq \mathbb{C}^{2n+1}$. A maximal torus \mathbf{T} of $SO(2n+1) \times SO(2)$ is given by $T \times SO(2)$ where

$$T = \left\{ \begin{pmatrix} \cos \theta_1 & \sin \theta_1 \\ -\sin \theta_1 & \cos \theta_1 \end{pmatrix} & & \\ & \ddots & & \\ & & \begin{pmatrix} \cos \theta_n & \sin \theta_n \\ -\sin \theta_n & \cos \theta_n \end{pmatrix} & \\ & & 1 \end{pmatrix} \right\}$$

The action of ${f T}$ on ${\cal D}_{IV}$ is given by

$$(A,\theta) \cdot z = e^{i\theta} A z$$

where $A \in T$ and $\theta \in \mathbb{R}$.

Lemma 1

Suppose that $\mathcal{D}_{IV}\subset\mathbb{C}^N$ where N=2n or 2n+1 and X_1,\cdots,X_{n+1} is the canonical basis of the Lie algebra $\mathfrak t$ of $\mathbf T$. Suppose that $f_j:\mathcal{D}_{IV}\to\mathbb{R}$ where $j=1,\cdots,n+1$ are smooth such that

(i).
$$df_j(z) = \omega(X_j^{\sharp}(z), \cdot)$$
,

(ii).
$$f_j \circ h = f_j$$
 for all $h \in \mathbf{T}$ and $z \in \mathcal{D}_{IV}$,

where X_j^\sharp are the complex vector fields corresponding to X_j . Identifying $\mathfrak{t}^*\cong\mathfrak{t}$ then

$$\mu(z) = \sum_{j=1}^{n+1} f_j(z) X_j$$

satisfies (1) and (2) above, i.e. μ is a moment map for the T-action on \mathcal{D}_{IV} .

Let t be the Lie algebra of T. Computing

$$X_z^{\sharp} = \frac{d}{dr} \Big|_{r=0} \exp(rX)z$$

where $X \in \mathfrak{t}, z \in \mathcal{D}_{IV}$ and $r \in \mathbb{R}$, then X_z^\sharp as a complex vector field is given by

$$\begin{split} X_z^{\sharp} &= \sum_{j=1}^n \left(\theta_j z_{2j} \frac{\partial}{\partial z_{2j-1}} - \theta_j z_{2j-1} \frac{\partial}{\partial z_{2j}} + \theta_j \overline{z}_{2j} \frac{\partial}{\partial \overline{z}_{2j-1}} - \theta_j \overline{z}_{2j-1} \frac{\partial}{\partial \overline{z}_{2j}} \right) \\ &+ \sum_{j=1}^{2n+1} \left(i \theta z_j \frac{\partial}{\partial z_j} - i \theta \overline{z}_j \frac{\partial}{\partial \overline{z}_j} \right). \end{split}$$

Let $\{X_j\}_{j=1}^{n+1}$ be the canonical basis of $\mathfrak{t}\subseteq\mathfrak{so}(2n+1)\oplus\mathfrak{so}(2)$. Then for $j=1,\cdots,n$,

$$X_{j}^{\sharp}(z) = z_{2j} \frac{\partial}{\partial z_{2j-1}} - z_{2j-1} \frac{\partial}{\partial z_{2j}} + \overline{z}_{2j} \frac{\partial}{\partial \overline{z}_{2j-1}} - \overline{z}_{2j-1} \frac{\partial}{\partial \overline{z}_{2j}}$$

and

$$X_{n+1}^{\sharp}(z) = \sum_{j=1}^{2n+1} \left(iz_j \frac{\partial}{\partial z_j} - i\overline{z}_j \frac{\partial}{\partial \overline{z}_j} \right).$$

On the other hand,

$$\omega(X_{j}^{\sharp}(z),\cdot) = \sum_{k=1}^{n} \left(-i\overline{z}_{2j}g_{k,2j-1}(z) + i\overline{z}_{2j-1}g_{k,2j}(z)\right)dz_{k}$$

$$+ \sum_{k=1}^{2n+1} \left(iz_{2j}g_{2j-1,k}(z) - iz_{2j-1}g_{2j,k}(z)\right)d\overline{z}_{k} \text{ for } j = 1, \cdots, n$$

$$\omega\left(X_{n+1}^{\sharp}(z),\cdot\right) = \sum_{k=1}^{2n+1} \left(-\sum_{j=1}^{2n+1} \overline{z}_{j}g_{kj}(z)dz_{k} - \sum_{j=1}^{2n+1} z_{j}g_{jk}(z)d\overline{z}_{k}\right).$$

Since

$$df_j = \sum_{k=1}^{2n+1} \left(\frac{\partial f_j}{\partial z_k} dz_k + \frac{\partial f_j}{\partial \overline{z}_k} d\overline{z}_k \right),$$

the condition $df_j(z) = \omega(X_j^\sharp(z),\cdot)$ is equivalent to satisfy for every $k=1,2,\cdots,2n+1$ the equations:

$$\frac{\partial f_j}{\partial z_k}(z) = -i\overline{z}_{2j}g_{k,2j-1}(z) + i\overline{z}_{2j-1}g_{k,2j}(z)$$
$$\frac{\partial f_j}{\partial \overline{z}_k}(z) = iz_{2j}g_{2j-1,k}(z) - iz_{2j-1}g_{2j,k}(z)$$

for $j=1,\cdots,n$ and

$$\frac{\partial f_{n+1}}{\partial z_k}(z) = -\sum_{j=1}^{2n+1} \overline{z}_j g_{kj}(z)$$
$$\frac{\partial f_{n+1}}{\partial \overline{z}_k}(z) = -\sum_{j=1}^{2n+1} z_j g_{jk}(z) d\overline{z}_k$$

THEOREM 1

Identifying \mathfrak{t} with \mathbb{R}^{n+1} , a moment map for the T-action on

$$\mathcal{D}_{IV} = \left\{ z = (z_1, \dots, z_n)^t \in \mathbb{C}^n \middle| \|z\|^2 < 1 \text{ and } 1 + |z^t z|^2 - 2\|z\|^2 > 0 \right\}$$

is the smooth function $\mu: \mathcal{D}_{IV} \to \mathbb{R}^{n+1}$ given by

$$\mu(z) = \frac{1}{\Delta(z)} \sum_{j=1}^{n} i(\overline{z}_{2j-1} z_{2j} - z_{2j-1} \overline{z}_{2j}) e_j + \frac{1}{\Delta(z)} (|z^t z|^2 - ||z||^2) e_{n+1}$$

where $z \in \mathcal{D}_{IV}, \Delta(z) = 1 - 2\|z\|^2 + |z^tz|^2$ and $\{e_j\}_j$ is the canonical basis of \mathbb{R}^{n+1} .

Toeplitz Operators with $\mu^{\mathrm{SO}(2)}$ -symbols on \mathcal{D}_{IV}

Toeplitz Operators with $\mu^{SO(2)}$ -symbols

Proposition 2

Let \mathbf{T} be the maximal torus of $\mathrm{SO}(n) \times \mathrm{SO}(2)$ and $\mu^{\mathbf{T}}: \mathcal{D}_{IV} \to \mathbb{R}^{n+1}$ be the moment map of \mathbf{T} for \mathcal{D}_{IV} given in Theorem 1. Suppose that H is a connected subgroup of \mathbf{T} . Then a moment map for the H-action on \mathcal{D}_{IV} is given by

$$\mu^{H}: \mathcal{D}_{IV} \to \mathfrak{h}$$
$$\mu^{H} = \iota^{*} \circ \mu^{\mathbf{T}}$$

where ι^* is the orthogonal projection $\mathbb{R}^{n+1} \to \mathfrak{h}$. In particular, the SO(2)-action on \mathcal{D}_{IV} has a moment map given by

$$\begin{split} \mu^{\mathrm{SO}(2)} : \mathcal{D}_{IV} &\to \mathbb{R} \\ \mu^{\mathrm{SO}(2)}(z) &= \frac{|z^t z|^2 - \|z\|^2}{1 - 2\|z\|^2 + |z^t z|^2}. \end{split}$$

THEOREM 2

Suppose that $\mathcal{D}_{IV}\subseteq\mathbb{C}^n$ where $n\geq 3$. Let $\mu^{\mathrm{SO}(2)}:\mathcal{D}_{IV}\to\mathbb{R}$ be a moment map for $\mathrm{SO}(2)$ on \mathcal{D}_{IV} given in the previous proposition. Then for $\lambda>n-1$, the Toeplitz C^* -algebras $\mathscr{T}_\lambda(\mathcal{A}^{\mu^{\mathrm{SO}(2)}})$ are commutative.

THEOREM 2

Suppose that $\mathcal{D}_{IV}\subseteq\mathbb{C}^n$ where $n\geq 3$. Let $\mu^{\mathrm{SO}(2)}:\mathcal{D}_{IV}\to\mathbb{R}$ be a moment map for $\mathrm{SO}(2)$ on \mathcal{D}_{IV} given in the previous proposition. Then for $\lambda>n-1$, the Toeplitz C^* -algebras $\mathscr{T}_{\lambda}(\mathcal{A}^{\mu^{\mathrm{SO}(2)}})$ are commutative.

Proof.

$$\mathcal{A}^{\mu^{SO(2)}} \subseteq \mathcal{A}^{SO(n) \times SO(2)}$$
.

Then

$$\mathscr{T}_{\lambda}(\mathcal{A}^{\mu^{\mathrm{SO}(2)}}) \subseteq \mathscr{T}_{\lambda}(\mathcal{A}^{\mathrm{SO}(n) \times \mathrm{SO}(2)}).$$

SPECTRAL INTEGRAL FORMULAS

How to compute the spectral integral formulas for Toeplitz operators with $u^{\mathrm{SO}(2)}$ -symbols?

SPECTRAL INTEGRAL FORMULAS

How to compute the spectral integral formulas for Toeplitz operators with $\mu^{\mathrm{SO}(2)}\text{-symbols}?$

Since $\mathcal{A}^{\mu^{SO(2)}} \subseteq \mathcal{A}^{SO(n) \times SO(2)}$, we can use the formula in [DQB18].

- $\mathcal{D}_{IV} \subseteq \mathbb{C}^n$ with $n \geq 3$.
- \bullet We have a decomposition into irreducible $\mathrm{SO}(n)\times\mathrm{SO}(2)\text{-submodules}$ with multiplicity 1

$$\mathcal{P}(\mathbb{C}^n) = \bigoplus_{(k_1, k_2) \in \mathbb{N}^2} V_{k_1, k_2}.$$

• This induces the multiplicity-free isotypic decomposition for the representation of $SO(n) \times SO(2)$ on the Bergman space $\mathcal{H}^2_{\lambda}(\mathcal{D}_{IV})$ where $\lambda > n-1$.

$$\mathcal{H}^2_{\lambda}(\mathcal{D}_{IV}) = \bigoplus_{(k_1, k_2) \in \mathbb{N}^2} V_{k_1, k_2}.$$

• If $a \in \mathcal{A}^{SO(n) \times SO(2)}$, the Toeplitz operator $T_a : \mathcal{H}^2_{\lambda}(\mathcal{D}_{IV}) \to \mathcal{H}^2_{\lambda}(\mathcal{D}_{IV})$ when restricts to V_{k_1,k_2} for every $(k_1,k_2) \in \mathbb{N}^2$ is

$$T_a\big|_{V_{k_1,k_2}} = c_{k_1,k_2}(T_a)\mathrm{Id}_{V_{k_1,k_2}}$$

Furthermore,

$$c_{k_1,k_2}(T_a) = \frac{\langle T_a \varphi, \varphi \rangle_{\lambda}}{\langle \varphi, \varphi \rangle_{\lambda}} \tag{3}$$

for every non-zero $\varphi \in V_{k_1,k_2}$ and $\langle f,g \rangle_{\lambda} = \int f\overline{g} dv_{\lambda}$ is the inner product on $\mathcal{H}^2_{\lambda}(\mathcal{D}_{IV})$.

Furthermore,

$$c_{k_1,k_2}(T_a) = \frac{\langle T_a \varphi, \varphi \rangle_{\lambda}}{\langle \varphi, \varphi \rangle_{\lambda}} \tag{3}$$

for every non-zero $\varphi \in V_{k_1,k_2}$ and $\langle f,g \rangle_{\lambda} = \int f\overline{g}dv_{\lambda}$ is the inner product on $\mathcal{H}^2_{\lambda}(\mathcal{D}_{IV})$.

For each $(k_1, k_2) \in \mathbb{N}^2$, the irreducible $SO(n) \times SO(2)$ -submodule V_{k_1, k_2} corresponds with the highest weight vector

$$p_{k_1,k_2}(z) = p_1(z)^{k_1} p_2(z)^{k_2} = (z_1 - iz_2)^{k_1} (z_1^2 + \dots + z_n^2)^{k_2}$$

where $z = (z_1, \cdots, z_n)^t \in \mathbb{C}^n$.

There is a Jordan algebra associated with the domain \mathcal{D}_{IV} given as follows:

- Write $\mathbb{R}^n = \mathbb{R}e_1 \oplus \mathbb{R}^{n-1}$ where $e_1 = (1, 0, \dots, 0)^t \in \mathbb{R}^n$ and for any $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we write $x = x_1e_1 + x'$ where $x' = (x_2, \dots, x_n)^t \in \mathbb{R}^{n-1}$.
- $(\mathbb{R}e_1\oplus\mathbb{R}^{n-1},\circ)$ is a Jordan algebra with the unit element e_1 where

$$(x_1e_1 + x') \circ (y_1e_1 + y') = (x_1y_1 + x' \cdot y')e_1 + (x_1y' + y_1x')$$

• Cone of positive elements: $x^2 = x \circ x$

$$\Omega = \{x^2 | x \in \mathbb{R}^n\}^\circ$$

= $\{x_1 e_1 + x' | x_1 > 0, x_1^2 - x' \cdot x' > 0\}$

• Order on \mathbb{R}^n : $x \succ 0$ if $x \in \Omega$

• A root of x: Any $y \in \mathbb{R}^n$ such that $y^2 = x$.

• A root of x: Any $y \in \mathbb{R}^n$ such that $y^2 = x$.

Proposition 3

For any $x=x_1e_1+x'\in\Omega$, there is the unique root denoted by $\sqrt{x}\in\Omega$ and it is given by

$$\sqrt{x} = \sqrt{\frac{x_1 + \sqrt{x_1^2 - x' \cdot x'}}{2}} e_1 + \frac{x'}{\sqrt{2(x_1 + \sqrt{x_1^2 - x' \cdot x'})}}.$$

• The embedding:

$$E: \mathbb{R}^n \to \mathbb{C}^n, E(x_1e_1 + x') = x_1e_1 + ix'$$

• $(E(\mathbb{R}^n), \circ)$ is a Jordan algebra with the unit e_1 and the product is given by:

$$(x_1e_1 + ix') \circ (y_1e_1 + iy') = (x_1y_1 + x' \cdot y')e_1 + i(x_1y' + y_1x')$$

• Cone of positive elements:

$$\widehat{\Omega} = E(\Omega) = \{x_1 e_1 + ix' | x_1 > 0, x_1^2 - x' \cdot x' > 0\}$$

• Write $\mathbb{C}^n = E(\mathbb{R}^n) \oplus iE(\mathbb{R}^n)$, then \mathbb{C}^n becomes a complex Jordan algebra with involution * given by $(x+iy)^* = x-iy$ with $x,y \in E(\mathbb{R}^n)$. The product is given by

$$z \circ w = (z_1 w_1 - z' \cdot w') e_1 + (z_1 w' + w_1 z')$$

where $z = z_1 e_1 + z', w = w_1 e_1 + w'$ with $z_1, w_1 \in \mathbb{C}, z', w' \in \mathbb{C}^{n-1}$.

• (\mathbb{C}^n, \circ) is a complex Jordan algebra with the unit e_1 associated with the domain \mathcal{D}_{IV} .

For any $(k_1, k_2) \in \mathbb{N}^2$, We have the non-zero polynomial that belongs to V_{k_1, k_2} given by

$$\phi_{k_1,k_2}(z) = \int_L p_{k_1,k_2}(gz) dg$$

where dg is the normalized Haar measure on L and L is the identity component of the isotropy subgroup of automorphism of the cone $\widehat{\Omega}$ that fixes the unit e_1 .

From Theorem 4.11 in [DQB18], the coefficients $c_{k_1,k_2}(T_a)$ in (3) for a $SO(n) \times SO(2)$ -invariant symbol a is given by

$$\begin{split} c_{k_1,k_2}(T_a) &= \frac{\langle T_a \phi_{k_1,k_2}, \phi_{k_1,k_2} \rangle_{\lambda}}{\langle \phi_{k_1,k_2}, \phi_{k_1,k_2} \rangle_{\lambda}} \\ &= \frac{\int_{\widehat{\Omega} \cap (e_1 - \widehat{\Omega})} a(\sqrt{x}) p_1(x)^{k_1} p_2(x)^{k_2} p_2(e_1 - x)^{\lambda - n} dx}{\int_{\widehat{\Omega} \cap (e_1 - \widehat{\Omega})} p_1(x)^{k_1} p_2(x)^{k_2} p_2(e_1 - x)^{\lambda - n} dx} \\ &= \frac{\int_{\Omega \cap (e_1 - \Omega)} a(E(\sqrt{x})) p_1(E(x))^{k_1} p_2(E(x))^{k_2} p_2(e_1 - E(x))^{\lambda - n} dx}{\int_{\Omega \cap (e_1 - \Omega)} p_1(E(x))^{k_1} p_2(E(x))^{k_2} p_2(e_1 - E(x))^{\lambda - n} dx} \end{split}$$

where

$$\begin{split} x &= (x_1, x_2, \cdots, x_n)^t = x_1 e_1 + x' \in \mathbb{R}^n, \\ dx &= dx_1 dx_2 \cdots dx_n \text{ is the Lebesgue measure,} \\ p_1(E(x)) &= p_1(x_1 e_1 + ix') = x_1 + x_2, \\ p_2(E(x)) &= p_2(x_1 e_1 + ix') = x_1^2 - x_2^2 + \cdots - x_n^2 = x_1^2 - x' \cdot x', \\ p_2(e_1 - E(x)) &= (1 - x_1)^2 - x' \cdot x', \\ E(\sqrt{x}) &= \sqrt{\frac{x_1 + \sqrt{x_1^2 - x' \cdot x'}}{2}} e_1 + \frac{ix'}{\sqrt{2(x_1 + \sqrt{x_1^2 - x' \cdot x'})}}, \\ \Omega \cap (e_1 - \Omega) &= 0 \prec x \prec e_1 \\ &= \left\{ x_1 e_1 + x' \in \mathbb{R} e_1 \oplus \mathbb{R}^{n-1} \middle| \begin{array}{c} 0 < x_1 < 1 \\ \sqrt{x' \cdot x'} < x_1 < 1 - \sqrt{x' \cdot x'} \end{array} \right\} \end{split}$$

THEOREM 3

Suppose that $\mathcal{D}_{IV} \subseteq \mathbb{C}^n$ $(n \geq 3)$ is given by

$$\mathcal{D}_{IV} = \left\{ z = (z_1, \cdots, z_n)^t \in \mathbb{C}^n \middle| \|z\|^2 < 1 \text{ and } 1 + |z^t z|^2 - 2\|z\|^2 > 0 \right\}.$$

Let $f \circ \mu^{\mathrm{SO}(2)} \in \mathcal{A}^{\mu^{\mathrm{SO}(2)}}$ be a moment map symbol. For every $\lambda > n-1$ and $(k_1,k_2) \in \mathbb{N}^2$, the spectral integral formula for the Toeplitz operator $T_{f \circ \mu^{\mathrm{SO}(2)}}$ is given by

$$c_{k_1,k_2}(T_{f \circ \mu^{\mathrm{SO}(2)}}) = \frac{\int\limits_{0 \prec x \prec e_1} f\left(\frac{x' \cdot x'}{\|x\|^2 - 1}\right) (x_1 + x_2)^{k_1} (x_1^2 - x' \cdot x')^{k_2} ((1 - x_1)^2 - x' \cdot x')^{\lambda - n} dx}{\int\limits_{0 \prec x \prec e_1} (x_1 + x_2)^{k_1} (x_1^2 - x' \cdot x')^{k_2} ((1 - x_1)^2 - x' \cdot x')^{\lambda - n} dx}$$

Referencias I

- [BTD13] Theodor Bröcker and Tammo Tom Dieck. *Representations of compact Lie groups*. Vol. 98. Springer Science & Business Media, 2013.
- [DQB18] Matthew Dawson and Raul Quiroga-Barranco. "Radial Toeplitz operators on the weighted Bergman spaces of Cartan domains". In: Representation Theory and Harmonic Analysis on Symmetric Spaces 714 (2018), pp. 97–114.
- [Hel79] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic press, 1979.
- [Joh80] Kenneth D Johnson. "On a ring of invariant polynomials on a Hermitian symmetric space". In: *Journal of Algebra* 67.1 (1980), pp. 72–81.
- [Loo75] Ottmar Loos. *Jordan Pairs*. Springer-Verlag, 1975.
- [Loo77] Ottmar Loos. "Bounded symmetric domains and Jordan pairs". In: Lecture Notes, Univ. California at Irvine (1977).

REFERENCIAS II

- [MS17] Dusa McDuff and Dietmar Salamon. *Introduction to symplectic topology*. 3rd ed. Oxford University Press, 2017.
- [Mok89] Ngaiming Mok. Metric rigidity theorems on Hermitian locally symmetric manifolds. Vol. 6. World Scientific, 1989.
- [QBSN21] Raúl Quiroga-Barranco and Armando Sánchez-Nungaray. "Moment maps of Abelian groups and commuting Toeplitz operators acting on the unit ball". In: Journal of Functional Analysis (2021), p. 109039.
- [Upm12] Harald Upmeier. *Toeplitz operators and index theory in several complex variables.* Vol. 81. Birkhäuser, 2012.

Thank You!