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AREAS OF RESEARCH AND OBIJECTIVE

AREAS OF RESEARCH AND OBJECTIVE

Bounded symmetric domain: D = G/K C C™ has genus p.
Example: unit disk, complex unit ball.

(Weightless) Bergman Space: H?(D) = L*(D, dv) N O(D).
Bergman Kernel: B: D x D — C.

Weighted Bergman Space: For A > p —1,

H3 (D) = L*(D, dvy) N O(D)
Bergman Kernel: By (z,w) = B(z,w)%
e Bergman projection:

PAf(z):/Df(w)B)\(z,w)dm(w).
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AREAS OF RESEARCH AND OBIJECTIVE

e Toeplitz Operator: For any a € L*°(D) called symbol, the Toeplitz
operator T, : H2(D) — H2(D) is defined by

TN (f) = Pa(af), f € H3(D)
In particular, for every f € H3(D) and z € D,
TO(f)(z) = /D a(w) f (1) Ba (2, w)dun ()

T, is bounded and thus is in B(H3(D)): the set of bounded operators
on H3 (D) which is a C*-algebra.
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AREAS OF RESEARCH AND OBIJECTIVE

Interesting C*-algebras: C*-algebras generated by Toeplitz operators.

Problem: Find the set of symbol A such that the corresponding Toeplitz
operators {1, : a € A} generate commutative C*-algebras.

Two interesting symbols:
e Invariant Symbols: Unit disk, unit ball,-- -, Bounded Symmetric Do-
mains.
e Moment Map Symbols: Unit ball.
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AREAS OF RESEARCH AND OBIJECTIVE

The biholomorphism group G on D acts on L>(D) by (g- f)(z) = f(9~'2)
forany g € G, f € L*(D) and z € D.
Let H < G. A symbol a is said to be H-invariant if

aoh=a,Vh € H.

o AH: The set of H-invariant symbols.

o 7\ (AH): The C*-algebra generated by the family of Toeplitz opera-
tors with H-invariant symbols
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AREAS OF RESEARCH AND OBIJECTIVE

The biholomorphism group G on D acts on L>(D) by (g- f)(z) = f(9~'2)
forany g € G, f € L*(D) and z € D.
Let H < G. A symbol a is said to be H-invariant if

aoh=a,Vh € H.

o AH: The set of H-invariant symbols.

o 7\ (AH): The C*-algebra generated by the family of Toeplitz opera-
tors with H-invariant symbols

Known Result: If H = K then 7, (AX) are commutative.
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AREAS OF RESEARCH AND OBIJECTIVE

e Bounded Symmetric Domain of Type IV:

Drv =592} 56, « s0(2) € €

has genus n.

For every A >n —1

I (ASOMXS02)y 3re commutative.
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AREAS OF RESEARCH AND OBIJECTIVE

e Bounded Symmetric Domain of Type IV:

Drv =592} 56, « s0(2) € €

has genus n.

For every A >n —1
I (ASOMXS02)y 3re commutative.
Observation: If H < K then AKX C Af . Therefore, for any A >n — 1,

D(AK) C 7 (AT,
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AREAS OF RESEARCH AND OBIJECTIVE

e Bounded Symmetric Domain of Type IV:

DIV — SOo(n, 2)/SO(n) « SO(Z) C (o

has genus n.

For every A >n —1
%(ASO(”)XSO@)) are commutative.
Observation: If H < K then AKX C Af . Therefore, for any A >n — 1,
D(AK) C 7 (AT,

Objective: Study Toeplitz operators with T-invariant symbols and with
SO(n — 1) x SO(2)-invariant symbols where T denote a maximal torus of
SO(n) x SO(2).
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AREAS OF RESEARCH AND OBIJECTIVE

CONTENTS

@ TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS
@ Application of Representation Theory
@ The C*-algebras 7 (AT)

© TOEPLITZ OPERATORS WITH SO(n—1)xSO(2)-INVARIANT

SYMBOLS
@ The Highest Weight Theorem and Branching Rule
@ The C*-algebras <7)\(~ASO(7171)><SO(2))
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TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

Toeplitz Operators with T-invariant Symbols
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APPLICATION OF REP TION THEORY

TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS THE C .

APPLICATION OF REPRESENTATION THEORY

Let D = G/K have genus p. Suppose that D is circled and K is the isotopy
group fixing 0. The maximal compact subgroup K admits a continuous
unitary representation 7y : K — U(H3(D)) on H3(D) given by

(ma(R)F)(2) = F(k~'2), ¥k € K, f € H3(D), = € D.

Let H be a closed subgroup of K.
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TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

APPLICATION OF REPRESENTATION THEORY

I'HE C ™ -ALGEBR v\'\

APPLICATION OF REPRESENTATION THEORY

Let D = G/K have genus p. Suppose that D is circled and K is the isotopy
group fixing 0. The maximal compact subgroup K admits a continuous
unitary representation 7 : K — U(H2(D)) on H3(D) given by

(ma(R)F)(2) = F(k~'2), ¥k € K, f € H3(D), = € D.

Let H be a closed subgroup of K.

PROPOSITION 1

For every A > p — 1, the algebras 7, (A?) are commutative if and only if
the unitary representations 7 are multiplicity-free if and only if

(D) =PV

JE

decomposes into inequivalent irreducible H-submodules V.
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APPLICATION OF TION THEORY

TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS THE C .

PROPOSITION 2

Suppose that a bounded symmetric domain D = G/K is circled and K is
the isotropy subgroup fixing 0. Then the set of polynomial in 3 (D) is
dense and my-invariant in H2 (D). In addition, the isotypic decomposition
of H3(D) and of P(C™) coincide as K-modules.




TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

APPLICATION OF REPRE:)ENTi\_TION THEORY

I'ng C CEBR \ﬁ\

PROPOSITION 2

Suppose that a bounded symmetric domain D = G/K is circled and K is
the isotropy subgroup fixing 0. Then the set of polynomial in 3 (D) is
dense and my-invariant in H2 (D). In addition, the isotypic decomposition
of H3(D) and of P(C™) coincide as K-modules.

We use the domain Dy with the realization given by

Dry = {z = (21, 2)t €CM||2)2 < 1and 1+ |2tz — 22| > o}

= 50001250 (m) x S0(2)
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TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS 73 (AT)

The action of SO(NN) x SO(2) on the N-dimensional domain Dry is given
by
(A,0)z=¢e"Az

cos) sinf
—sinf cosf

where A € SO(N), < ) € SO(2) with 8 € R and z € Dyy.
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TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS J)(AT)

The action of SO(NN) x SO(2) on the N-dimensional domain Dry is given
by
(A,0)z=¢e"Az
cosf sinf .
where A € SO(N), _sinf cosd) € SO(2) with # € R and z € Dyy.
A maximal torus of SO(N) x SO(2) is T = T x SO(2) where T is a

maximal torus of SO(N) such that any element in T is in the following
form:
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TOEPLITZ OPERATORS WITH T-INVARIANT SY

For N =2n +1,
cosf; sinfd,
—sinf#; cosf;

cosf, sinf,
—sinf, cosé,

For N = 2n,
cosf; sinb;
—sin#; cosb;

cosf, sind,,
—sin#,, cosb,
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- APPLICATION OF REPRESENTATION THEOR)
TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS Ty (AT)

PROPOSITION 3

Let D C C™ be a bounded symmetric domain and H be a compact group
acting linearly on C™ preserving D. Let T': C™ — C™ be a linear
isomorphism and ® : H — T~ 'HT, h + T~ 'hT. Define:

p:P(C™") — P(C")
p(z) = p(T~'2)
where p(z) is a complex n-variables polynomial. Then ¢ is an

isomorphism and it is ®-equivariant; that is, ¢(hp(z)) = ®(h)e(p(z)) for
all h € H,p(z) € P(C™), i.e. the following diagram commutes.

H x P(C") ———— P(C")
In particular, V. C P(C") is an

0 O . H-(irreducible) module if and only
’ if (V) is an T~'HT-(irreducible)
module.

T-'HT x P(C") ——5% P(C")
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- A PPLICATION OF REPRESENTATION THEORY
TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS Ty (.AT)

For N = 2n, the Lie algebra of SO(2n) and its complexification are given
as below.

n) = {X € gy, (R)| X" = fX}

:{X ( A B) 4,C € so(n), Beglk(lR)},

50(C*") = {X € gly,,(C)| X" = —X}.
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- A PPLICATION OF REPRESENTATION THEORY
TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS Ty (.AT)

For N = 2n, the Lie algebra of SO(2n) and its complexification are given
as below.

n) ={X € gh,(R)| X' = -X}
:{X ( A B) 4,C € so(n), Beglk(lR)},
50(C*") = {X € gl (C)|X" = —X}.

For N = 2n + 1, the Lie algebra of SO(2n + 1) and its complexification
are given as below.

50(2n 4 1) = {X € gly,,; (R)| X' = —X}

A B0\ | 4 ceson),Begl,(R),
={X=|-8 C € My (R). ’
_nt _’7t 0 Yy kx1

50(C*") = {X € gly, 1 (C)| X' = —X}.
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TOEPLITZ OPERATO WITH T-INVARIANT SY

We use the matrices of change of coordinates as below:

'HEORY

1 (1, I, B
Pn = ﬁ (_Z.In Zln) 'For N =2n

Py 0 B
Q"(O 1) for N =2n + 1.
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TOEPLITZ OPERATOR TH T-INVARIANT SY

We use the matrices of change of coordinates as below:

1 1, I, _
Pn = ﬁ (_Z.In Zln) 'For N = 2n
P, O _
Q”(O 1) for N =2n +1.
0 I, (S, O
We denote S,, = (In 0) and S, 1 = ( 0 1)
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- A PPLICATION OF REPRESENTATION THEORY
TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS Ty (.AT)

For N = 2n,

s0(2n, S,) = {Y - (? Z) € g1, (O] B € u(n), F € 50(((3")}

50(C*", S,,) = {Y € gly,,(O)|Y'S,, = —5,Y, Tr(Y) = 0} .
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- A PPLICATION OF REPRESENTATION THEORY
TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THE C*-ALGEBRAS Ty (.AT)

For N = 2n,

s50(2n,S,) = {Y (? Z) € gl,, (C ‘E cu(n),F € 50(((3")}
50(C*", S,,) = {Y € gly,,(O)|Y'S,, = —5,Y, Tr(Y) = 0} .
For N =2n +1,

50(C*" S, 1) ={Y € gly 1 (C)[Y'Sp1 = =8, Y, Tr(Y) = 0},

E F ¢
= = E cu(n), F € s0(C"),

s0(2n+1,5,1)=<Y = F FE

(2n v S e o €, € Myx1(C)
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TOEPLITZ OPERATOR TH T-INVARIANT SY

The maximal abelian subalgebra of s0(2n, S,):
to,s, = {d(¥) = diag(ith, - - - , 10, =iy, -+, —i0y)|01, -+ , ¥, € R}
The maximal torus of SO(2n, S,,):

Ts, = {diag(e“91 ez L etUn o pmia L 7e_w")|191, -, € R}
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TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

The maximal abelian subalgebra of s0(2n, S,):

to,s, = {d(¥) = diag(ith, - - - , 10, =iy, -+, —i0y)|01, -+ , ¥, € R}

The maximal torus of SO(2n, S,,):

Ts, = {diag(e“91 ez L etUn o pmia L 7e_w")|191, -, € R}
The maximal abelian subalgebra of so(2n + 1,5, 1):

to,s,, = 1d(9,0) = diag(iv)y, - - - , i, =101, - , =iy, 0)[I1,--- , 0, € R}.
The maximal torus of SO(2n + 1,5, 1):

Tsn,l = {diag(eml ) 6“92a e 36“9"3 6711917672192, e aeimna 1)|191a e aﬂn € IR}
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TOEPLITZ OPERATORS WITH T-INVARIANT SYMBOLS

THEOREM 1

Suppose that N > 3 and Dy € CV where N = 2n or 2n + 1. With
respect to the w-coordinates, i.e. with respect to the matrices of change
of coordinates P, and @,, above, the decomposition of P(C¥) into
T-submodules where T is a maximal torus of SO(IN) x SO(2) is given by

P(CY)= P Cuw”

a€NN

and it decomposes with higher multiplicity. In particular, the Toeplitz
C*-algebras 7, (AT) where A > N — 1 are not commutative.
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'HEORY

TOEPLITZ OPERATORS WITH T-INVARIANT SY

Proof: Computing the character of the representations.
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TOEPLITZ OPERATO WITH T-INVARIANT SY

Proof: Computing the character of the representations.
The action of T on the monomial w® where & = (a1, g, -+ ,2,) € NZ".

7T)\((ta 8))wa = ((ta 8)_1 : w)a

n
= g lol 1_[15j"H Tw®.
Jj=1

The character: xa,n(t,s) = s~ 1 T[_ 5"~
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TOEPLITZ OPERATOR TH T-INVARIANT SY

Proof: Computing the character of the representations.
The action of T on the monomial w® where & = (a1, g, -+ ,2,) € NZ".

7T)\((ta 8))wa = ((ta 8)_1 . w)a

n
=g lel 1_[15j"H Tw®.
j=1

The character: xa,n(t,s) = s~ 12 T[_ ¢~

The action of T on the monomial w® where o = (a1, a9, ,a2,41) €

m((t, $)w® = ((t,9) 71 w)”

n
=s |"“1_[tj"H Tw®.
Jj=1

The character: xa,n(t,s) = s~ 12 T[_ 5"~
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'HE HIGH WEIGHT T

EORJ
T'HE C CE N

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Toeplitz Operators with SO(n — 1) x SO(2)-invariant Symbols
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THE H JEIGHT THEO};EM AlND BRANCHING RULE
) T 5 THE C* -A sRas Ty (ASO(n )X SO(2
TOEPLITZ OPERATORS WITH SO (n—1) X SO(2)-INVARIANT SYMBOL A

THE HiGHEST WEIGHT THEOREM AND BRANCHING RULE

DEFINITION 1

Let h be a Cartan subalgebra of a semisimple Lie algebra g and a be an
element of the dual h*. Let o be a representation of g on a complex
vector space V. We define

Vo :={v € V]p(z)v = a(x)v,Vz € bh}.

When V,, # 0, we call o a weight of the representation ¢ of g with
respects to the Cartan subalgebra b and call V,, a weight space. Members
of V, are called weight vectors. For the adjoint representation, we have

9o = {v € V|[z,v] = a(z)v,Vz € h}.

A weight, weight space and weight vector for the adjoint representation
of g are respectively called a root, root space and root vector.
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THE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
SO(n ) X SO(2)
A EACO)

TOEPLITZ OPERATO TH SO(n—1) X SO(2)-INVARIANT SYMBOL

The complex Lie algebra:

g =50(C*"*) := {X € gly,, 11 (C)| X" + X =0}.




CHING RULE
))

TOEPLITZ OPERATORS WITH SO (1 —1) X SO(2)-INVARIANT §

The complex Lie algebra:
g =50(C*"*) := {X € gly,, 11 (C)| X" + X =0}.
The Cartan subalgebra t of g: Any element B € t is a block diagonal

matrix such that
B,

where
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T'HE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
= SO(n ) X SO (2)
: (e )

- o S o - I'He C GEBR Z
TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

The complex Lie algebra:
g =50(C*"*) := {X € gly,, 11 (C)| X" + X =0}.
The Cartan subalgebra t of g: Any element B € t is a block diagonal

matrix such that
B,

B,

where
A ANY
Bj— <—7:bj 0>,b]€(C.

Forany j =1,2,--- ,n we define e; : t = C such that e;(B) = b,.
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T'HE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
= SO(n ) X SO (2)
: (e )

- o S o - I'HE ( GEBR Z
TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

The complex Lie algebra:
g =50(C*"*) := {X € gly,, 11 (C)| X" + X =0}.
The Cartan subalgebra t of g: Any element B € t is a block diagonal

matrix such that
B,

B,

where
A ANY
Bj— <—7:bj 0>,b]€(C.

Forany j =1,2,--- ,n we define e; : t = C such that e;(B) = b,.
Collection of roots: ® = {£(e; L ey), el <j <k <n,1<I<n}
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T'HE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
= SO(n ) X SO (2)
: (e )

- o S o - I'He C GEBR Z
TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

The complex Lie algebra:
g =50(C*"*) := {X € gly,, 11 (C)| X" + X =0}.
The Cartan subalgebra t of g: Any element B € t is a block diagonal

matrix such that
B,

B,

. 0 ib; '
B; = <—z‘bj 0 > ,b; € C.
Forany j =1,2,--- ,n we define e; : t = C such that e;(B) = b,.
Collection of roots: ® = {£(e; L eg), el <j <k <n,1<I<n}
For g = 50(C?"): @ = {£(e; £ )|l <j <k <n}.

where
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EM AND BRANCHING RULE
2 ) X SO(2)
)

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.

e Define bilinear form on h* x h* — algebraically integral, dominant.
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EM AND BRANCHING RULE
2 ) X SO(2)
)

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.
e Define bilinear form on h* x h* — algebraically integral, dominant.

For algebra:

(9.h)
@ : irreducible representation of g
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EM AND BRANCHING RULE
2 ) X SO(2)
)

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.
e Define bilinear form on h* x h* — algebraically integral, dominant.

For algebra:

(g,h) .
@ : irreducible representation of g -
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CHING RULE
))

TOEPLITZ OPERATORS WITH SO (1 —1) X SO(2)-INVARIANT §

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.
e Define bilinear form on h* x h* — algebraically integral, dominant.

For algebra:
{ (g,h) } - { The highest weight A\ € b* }
14

: irreducible representation of g dominant algebraically integral
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T'HE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
= SO(n ) X SO (2)
: (e )

- o S o - I'He C GEBR Z
TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.
e Define bilinear form on h* x h* — algebraically integral, dominant.

For algebra:

{ (g,h) } - { The highest weight A\ € b* }
P

: irreducible representation of g dominant algebraically integral

For group:

{ (G,T) = (g0, to) — (g,1) }
p

: irreducible representation of G
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T'HE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
= SO(n ) X SO (2)
: (e )

- o S o - I'He C GEBR Z
TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.
e Define bilinear form on h* x h* — algebraically integral, dominant.

For algebra:

{ (g,h) } - { The highest weight A\ € b* }
P

: irreducible representation of g dominant algebraically integral

For group:

{ (G,T) = (g0, to) — (g,1) }
p

: irreducible representation of G -
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T'HE HIGHEST WEIGHT THEOREM .—'\lND BRANCHING RULE
= SO(n ) X SO (2)
: (e )

- o S o - I'He C GEBR Z
TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

Theorem of the highest weight (ideas and constructions):
(g,h): Lie algebra-Cartan subalgebra pair.

e Define an order on h* — positive roots T — simple roots A.
e Define bilinear form on h* x h* — algebraically integral, dominant.

For algebra:

{ (g,h) } - { The highest weight A\ € b* }
P

: irreducible representation of g dominant algebraically integral

For group:

(G, T) = (go,t0) — (g, 1) . The highest weight A € t*
p : irreducible representation of G ] dominant analytically integral
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CHING RULE
))

TOEPLITZ OPERATORS WITH SO (1 —1) X SO(2)-INVARIANT §

PROPOSITION 4

For SO(2n + 1), the irreducible representations correspond to the
highest weights of the form > aje; such that
j=1
ap >+ >ap > 0.

For SO(2n), the irreducible representations correspond to the
n

highest weights of the form )" aje; such that
j=1

a1 > > Apo > ay.

Note:
For s0(C?" 1) : A = {e; —ez,ea — €3, " ,€n_1 — €n,€n}.
For 50(C?") : A = {e1 —ez,e2 — €3, ,€p—1 — €n, €1+ €}
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EM AND BRANCHING RULE
2 ) X SO(2)
)

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Example: G = SO(N), go = s0(N), g = so(CV).

V:i=P(C") = é P™(CY)
m=0

where P™(CV) is the subspace of homogeneous polynomials of degree m.
The highest weight of P™(CY) (related to the usual positive system) is

meq.
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EM AND BRANCHING RULE
2 ) X SO(2)
)

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Branching Rules: Rules for decomposing the restriction of an irreducible
representation into irreducible representations of the subgroup.
V is irreducible G-module, H < G.

Branching Rule ..
o Zrenching Rule, v EBV], where Vj is irre. H-submodule
J
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CHING RULE
))

TOEPLITZ OPERATORS WITH SO (1 —1) X SO(2)-INVARIANT §

Branching Rules: Rules for decomposing the restriction of an irreducible
representation into irreducible representations of the subgroup.
V is irreducible G-module, H < G.

Branching Rule ..
o Zrenching Rule, v EBV], where Vj is irre. H-submodule
J

Embedding:
SO(n — 1) < SO(n)
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THE HIGHES

5T WEIGHT THEOREM AlND BRANCHING RULE
P SO(n ) X SO (2)

. o THE C*-ALGEBRAS Ty (A® =X

TOEPLITZ OPERATORS WITH SO(nn—1) X SO(2)-INVARIANT SYMBOL A

PROPOSITION 5 (MURNAGHAN)

i. For SO(2n + 1), the irreducible representation with highest weight
ajey + - - + ane, decomposes with multiplicity 1 under SO(2n),
and the representations of SO(2n) that appear are exactly those
with highest weight c;e; + - - - + ¢, e, such that

@1 >C1 >G> Ca >+ > Apoq > Cpe1 > Ap > [Cp.

ii. For SO(2n), the irreducible representation with highest weight
aiel + - - - + ape, decomposes with multiplicity 1 under SO(2n — 1),
and the representations of SO(2n — 1) that appear are exactly those
with highest weight c1e; + -+ 4+ ¢,_1€,_1 such that

a1 >¢1 >G> ¢ > > Apo1 > Cpe1 > |an.
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'HE HIGHI WEIGHT THEORS AND [
THE C™* EBRAS :7,\(.ADL)("_1)X

TOEPLITZ OPERATO WITH SO (n—1) X SO(2)-INVARIANT SYMBOL

THE C*-ALGEBRAS ) (A

Suppose that Dy € C™ and A > n—1. Then the C*-algebras .73 (ASC (") xS0(2))
are commutative.
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'HE HIGHE V RANGHINC

T THEORF AND B \
THE C*-ALCEB “,\(ADO("_I)XE()(Z))

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

THE C*-ALGEBRAS J (ASO(n-1DxS0

Suppose that Dy € C™ and A > n—1. Then the C*-algebras .73 (ASC (") xS0(2))
are commutative.

PROPOSITION 6 (JOHNSON)

The space P(C™) can be decomposed into irreducible
SO(n) x SO(2)-submodules with multiplicities 1. More precisely,

P(Cn) = @ Viey ks

(k1,k2)EN?

where Vi, &, is a subspace of P (C™) of homogeneous polynomials of
degree m = ky + 2ks, is an irreducible SO(n) x SO(2)-submodule that
occurs with multiplicity 1.
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'HE HIGH WEIGHT THEOR] NGHING R

LGEBRAS J\(Aso(n—l)xsur 2))

TOEPLITZ OPERATORS WITH SO (1 —1) X SO(2)-INVARIANT §

Observation: For any (ki, ko) € IN?,

e The representation of SO(2) on V4, , corresponds to the character
t s t~(F1+2k2) where t € SO(2) = T.

e The representation of SO(n) on Vj, r, corresponds to the highest
weight k1e; where e; defined as before. Thus,

Viy by = Viye, as SO(n)-modules
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'HE HIGH WEIGHT THEOE NGHINC

3 AND BR
THE C™*-ALGEBRAS Ty (ASO(n—1)XxS0(2))

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

Observation: For any (ki, ko) € IN?,

e The representation of SO(2) on V4, , corresponds to the character
t s t~(F1+2k2) where t € SO(2) = T.

e The representation of SO(n) on Vj, r, corresponds to the highest
weight k1e; where e; defined as before. Thus,

Viy by = Viye, as SO(n)-modules

e From the Branching rule SO(n) | SO(n — 1), we have

where V., is the irreducible SO(n — 1)-submodule corresponds to
the highest weight cie;.
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'HE HIGHI WEIGHT THEOR] AND BRANGHINC
THE C*-ALGEBRAS J\(.A“)("_I)XS() 2))

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

THEOREM 2

Suppose that Dy € C™ with n > 3. The decomposition of P(C™) into
irreducible SO(n — 1) x SO(2)-submodules is given by

P((Cn> = @ @ k17k2

(k] ,k)Q)E]N2 c1=0

such that some V/ 41k, APPEAr more than once. In particular, the
representation has hlgher multiplicity and thus the Toeplitz C*-algebras
I\ (ASO(n=1)xSO0R)) are not commutative.
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'HE HIGHI WEIGHT THEOR] 3RANGHINC
THE C*-ALGEBRAS 7\(.A30(" I)XS() (2))

TOEPLITZ OPERATORS WITH SO(n—1) X SO(2)-INVARIANT SYMBOL.

THEOREM 2

Suppose that Dy € C™ with n > 3. The decomposition of P(C™) into
irreducible SO(n — 1) x SO(2)-submodules is given by

P((Cn> = @ @ k17k2

(k] ,k)Q)E]N2 c1=0

such that some Vklk appear more than once. In particular, the
representation has hlgher multiplicity and thus the Toeplitz C*-algebras
I\ (ASO(n=1)xSO0R)) are not commutative.

Proof:
Vi'y 2 V3 as SO(n — 1) x SO(2)-submodules.
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