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Abstract
Let us consider, for n ≥ 3, theCartan domainDIV

n of type IV.On theweightedBergman
spaces A2

λ(D
IV
n ) we study the problem of the existence of commutative C∗-algebras

generated by Toeplitz operators with special symbols. We focus on the subgroup
SO(n) × SO(2) of biholomorphisms of DIV

n that fix the origin. The SO(n) × SO(2)-
invariant symbols yield Toeplitz operators that generate commutative C∗-algebras,
but commutativity is lost when we consider symbols invariant under a maximal torus
or under SO(2). We compute the moment map μSO(2) for the SO(2)-action on DIV

n
considered as a symplectic manifold for the Bergman metric. We prove that the space
of symbols of the form a = f ◦ μSO(2), denoted by L∞(DIV

n )μ
SO(2)

, yield Toeplitz
operators that generate commutative C∗-algebras. Spectral integral formulas for these
Toeplitz operators are also obtained.

Keywords Toeplitz operators · Bergman spaces · Moment maps

Mathematics Subject Classification Primary 47B35; Secondary 22D10 · 53D20

1 Introduction

For a circled bounded symmetric domain D inCn we define the (weightless) Bergman
spaceA2(D) as the space of holomorphic square-integrable functions with respect to
the (normalized) Lebesgue measure dv(z). This turns out to be a closed subspace of
L2(D). Furthermore,A2(D) is a reproducing kernel Hilbert space and the orthogonal
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projection B : L2(D) → A2(D) is given by integration against the reproducing
kernel. This naturally leads to the so-called Toeplitz operators, which are bounded
operators onA2(D) of the form Ta = B ◦ Ma , where a ∈ L∞(D) is called the symbol
of Ta .

Bergman spaces and Toeplitz operators yield concrete examples of a Hilbert space
and a family of operators to study. Furthermore, this setup is quite rich and not very
restrictive. For example, it has been proved in [8] that the Toeplitz operators are dense
in the strong operator topology in the algebra of all bounded operators. This certainly
implies that generically two given Toeplitz operators will not commute. Nevertheless,
it has been found that by selecting suitable families of symbols the Toeplitz operators
will in fact commute. More precisely, if we denote by T (S) the unital Banach algebra
generated by Toeplitz operators, then for many choices of S ⊂ L∞(D) the algebra
T (S) is in fact a commutative C∗-algebra. Most of the examples of commutative C∗-
algebras obtained in this way are infinite dimensional with very complicated structure.
We refer to [5–7, 10, 15, 22, 23] for a few examples of these facts. Furthermore, even
just the problemof finding commutingToeplitz operators or studying their commutator
has received some attention. We refer to [1, 2, 4, 16, 26] for some works related to
these problems.

For a circled bounded symmetric domain D we have at our disposal its group
Aut(D) of biholomorphisms. For a few years now, it has been known that for H ⊂
Aut(D) a suitably chosen subgroup, the space of H -invariant symbols, denoted by
L∞(D)H , yields a commutative C∗-algebra T (L∞(D)H ). This phenomenon was
first discovered in [15] for the unit disk D and the group T of rotations around the
origin. Then, somemore recent general results have been obtained for the unit ball and
more general bounded symmetric domains (see the references mentioned above). In
most cases, this requires a quite large subgroup H to obtain commutative C∗-algebras
generated by Toeplitz operators.

Most recently a new technique has been introduced to construct special families
of symbols. The underlying symplectic geometry of the unit ball Bn was used in
[21] to build commutative C∗-algebras generated by Toeplitz operators. For the case
of the unit ball Bn it is known that maximal Abelian subgroups of Aut(Bn) yield,
by the invariance procedure described above, commutative C∗-algebras generated by
Toeplitz operators (see [22, 23]). The results from [21] can be seen as providing an
alternative symplectic-geometric interpretation of these results for the unit ball Bn .
More precisely, it was proved that, for a maximal Abelian subgroup H ⊂ Aut(Bn)

a symbol a ∈ L∞(Bn) is H -invariant if and only if for some function f we can
write a = f ◦ μH , where μH is the moment map for the symplectic H -action on
B

n . Hence, one can argue that the existence of commutative C∗-algebras generated
by Toeplitz operators associated to a maximal Abelian subgroup H is a consequence
of the underlying symplectic geometry.

On the other hand, for bounded symmetric domains D with rank at least 2 it has
been found that the maximal Abelian subgroups H ⊂ Aut(D) very rarely yield com-
mutative C∗-algebras generated by Toeplitz operators, by simply using the symbols
L∞(D)H . This points to the unit ballBn , whose rank is 1, as a very special case. Given
the symplectic-geometric explanation of the situation for the unit ball, it is natural to
consider, for bounded symmetric domains with higher rank, the problem of construct-
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ing commutative C∗-algebras generated by Toeplitz operators using moment maps.
This is the setup for the main contribution of this work.

We consider the n-dimensional Cartan domain DIV
n of type IV. This domain is

defined in Sect. 2 and we assume in the rest of this work that n ≥ 3 to avoid the
trivial lower dimensional cases. As described above, we have Bergman spaces and
Toeplitz operators on the domain DIV

n , which we consider for the general weighted
case. The subgroup of biholomorphisms that fix the origin is given by a linear action
of SO(n) × SO(2). This group yields two very important actions. First, we have its
symplectic action on DIV

n , and second, we have unitary representations πλ on the
weighted Bergman spaces (λ > n − 1) (see Sects. 2.2 and 3, respectively). The
maximal tori of SO(n)×SO(2) have dimension 	n/2
+1 and we choose in Sect. 3.2
a (canonical) maximal torus denoted by Tn × SO(2).

We state in Theorem 3.12 that the C∗-algebras generated by Toeplitz operators
given by T (λ)(L∞(DIV

n )SO(n)×SO(2)), that correspond to the SO(n)×SO(2)-invariant
symbols, are commutative, while the C∗-algebras given by T (λ)(L∞(DIV

n )Tn×SO(2)),
corresponding to the Tn ×SO(2)-invariant symbols, are not commutative. The former
claim was already known from [5] but the latter is new. Note that Tn × SO(2) is a
maximal Abelian subgroup of the biholomorphism group of DIV

n , thus providing an
example of the behavior noted above for higher rank bounded symmetric domains.
Recall that the rank of DIV

n is 2 for every n. Theorem 3.12 also proves that the C∗-
algebra T (λ)(L∞(DIV

n )SO(n−1)×SO(2)) is not commutative. As noted in Remark 3.16,
the subgroup SO(n − 1) × SO(2) is maximal connected in SO(n) × SO(2). Hence,
not even dropping the Abelian property of a subgroup of SO(n) × SO(2) allows us to
obtain commutative C∗-algebras generated by Toeplitz operators by using invariant
symbols for a still quite large subgroup.

In Sect. 4 we compute in Theorem 4.4 the moment map for the symplectic Tn ×
SO(2)-action on DIV

n . As a consequence we obtain in Corollary 4.5 the moment map
for the SO(2)-action on DIV

n . In this same section, we consider moment map symbols
for SO(2) as symbols of the form a = f ◦ μSO(2), where f is some function and
μSO(2) is the moment map computed in Corollary 4.5. See also Definition 5.1 for a
more general notion. The space of moment map symbols for SO(2) is denoted by
L∞(DIV

n )μ
SO(2)

. As one of our main results, we prove in Theorem 5.2 that the C∗-
algebra T (λ)(L∞(DIV

n )μ
SO(2)

) is commutative. Furthermore, we also find an explicit
Hilbert direct sum decomposition of A2

λ(D
IV
n ) with respect to which all the elements

of T (λ)(L∞(DIV
n )μ

SO(2)
) are simultaneously diagonalized.

The next problem is to explicitly compute the coefficients that diagonalize aToeplitz
operator T (λ)

a , in terms of the symbol a, when the symbol belongs to L∞(DIV
n )μ

SO(2)
.

Such explicit formula is obtained in Theorem 5.9. Similar formulas were obtained in
[7], and in fact we use those to obtain ours. The formulas from [7] require computing
square roots for positive elements in the Jordan algebra associated to DIV

n . We achieve
this in Corollary 5.4, which yields a fairly complicated formula for the square roots.
However, the moment map μSO(2) and the formula for the square roots play together
very well to provide the fairly simple spectral integral formula shown in Theorem 5.9.
This formula and the fact that the very small subgroup SO(2) yields commutative C∗-
algebras using itsmomentmap, highlight the importance of symplectic geometry in the
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solution of this operator theory problems. One can safely conjecture that the existence
of many of the known commutative C∗-algebras generated by Toeplitz operators can
be explained by symplectic geometric means.

As for the details of our work, one of our main tools is the use of representation
theory of compact groups. In particular, we compute in Sect. 3 the isotypic decompo-
sitions for the representation πλ of the group SO(n)×SO(2) on the weighted Bergman
spaces A2

λ(D
IV
n ). We also compute such decompositions for the restrictions of πλ to

SO(n − 1) × SO(2), Tn × SO(2) and SO(2). Then, the criterion provided by Theo-
rem 3.11 allows us to determine the commutativity of the C∗-algebras generated by
Toeplitz operators with H -invariant symbols in terms of the isotypic decomposition
of A2

λ(D
IV
n ) corresponding to H .

In Sect. 4 we compute the moment maps of Tn × SO(2) and SO(2). And in Sect. 5
we prove the main results which, as noted above, involve some computations with
Jordan algebras. It is worthwhile to note that the commutativity of the C∗-algebras
T (λ)(L∞(DIV

n )μ
SO(2)

) can be explained by a very peculiar relationship between the
groups SO(n)×SO(2) and SO(2). To be more precise, the moment map μSO(2) is not
only SO(2)-invariant, as it must be by definition, but also SO(n) × SO(2)-invariant.
We use this to obtain the commutativity of T (λ)(L∞(DIV

n )μ
SO(2)

) (see the proof of
Theorem 5.2) and to be able to compute the spectral integral formulas in Theorem 5.9.

2 The Cartan Domains of Type IV

We will denote by DIV
n the n-dimensional Cartan domain of type IV, which is given

by

DIV
n = {z ∈ C

n | |z| < 1, 2|z|2 < 1 + |z�z|2},

where the elements of Cn are considered from now as columns. It is very well known
that DIV

n is a circled bounded symmetric domain for every n ≥ 1 (see [20, 25]). For
n = 1, it is easy to see that this domain is the unit disk D, since the second defining
condition is always satisfied in this case. Also, using the arguments found in [20], it
is easy to see that there is a biholomorphism between DIV

2 and D2. On the other hand,
for every n ≥ 3, the bounded symmetric domain DIV

n is irreducible (see [11, 20]). For
this reason, we will consider the case n ≥ 3 in the rest of this work. On the other
hand, it is well known that so(4, 2) � su(2, 2) (see [11]) and so the domain DIV

4 is
biholomorphically equivalent to the Cartan domain DI

2×2. The latter is defined as the
set of complex 2 × 2 matrices Z that satisfy Z∗Z < I2.

The connected component of the biholomorphism group of DIV
n is isomorphic to

SO0(n, 2). The proof of this can be found in [11, 20, 24]. In particular, [24] shows that
the connected component of the biholomorphism group of DIV

n is realized through an
action of SO0(n, 2) by quadratic fractional transformations. On the other hand, the
maximal compact subgroup SO(n) × SO(2) of SO0(n, 2) acts linearly on DIV

n by the
expression
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SO(n) × SO(2) × DIV
n → DIV

n

(A, t) · z = t Az, (2.1)

and this action realizes the biholomorphisms of DIV
n that fix the origin. Note that

we have used the natural isomorphism SO(2) � T, where T denotes the unit circle
in C, that comes from the identification C � R

2. More precisely, we consider the
isomorphism

T → SO(2)

eiϑ 
→
(

cos(ϑ) sin(ϑ)

− sin(ϑ) cos(ϑ)

)
, (2.2)

where ϑ ∈ R. We will use such identifications in the rest of this work.
From the previous remarks, it follows that we have a natural diffeomorphism

DIV
n � SO0(n, 2)/SO(n) × SO(2)

that is in fact a biholomorphism for the structure of Hermitian symmetric space for
the quotient on the right. We refer to [11, 20, 24] for further details. We observe that
SO(n) is a simple Lie group except for n = 2, 4. Nevertheless, we recall our standing
assumption n ≥ 3.

In the notation of [25], the domain DIV
n has genus n, rank 2 and characteristic

multiplicities a = n − 2 and b = 0. In particular, the vanishing of the last value
implies that DIV

n is a bounded domain with a tube-type unbounded realization.

2.1 Bergman Spaces and Toeplitz Operators

Let us consider the Lebesgue measure dv(z) on C
n normalized by v(DIV

n ) = 1.
Then, we will denote by A2(DIV

n ) the (weightless) Bergman space over DIV
n which

consists of the holomorphic functions that belong to L2(DIV
n , v). It is well known

(see [11, 25]) that this is a closed subspace of L2(DIV
n , v) that admits a reproducing

kernel. In particular, the orthogonal projection B : L2(DIV
n , v) → A2(DIV

n ), called
the (weightless) Bergman projection, is given by

B( f )(z) =
∫
DIV

n

f (w)K (z, w)dv(w),

for every f ∈ L2(DIV
n , v) and z ∈ DIV

n , where K is the (weightless) Bergman
reproducing kernel. The results from [12] (see also [18]) imply that the function
K : DIV

n × DIV
n → C is given by

K (z, w) = (
1 − 2z�w + (z�z)(w�w)

)−n
.
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Following Section 2.9 from [25], we consider the weighted measure

(
1 − 2|z|2 + |z�z|2)λ−ndv(z)

which is finite on DIV
n precisely for λ > n − 1. Hence, for every such λ, we choose a

normalizing constant cλ > 0 such that the measure

dvλ(z) = cλ

(
1 − 2|z|2 + |z�z|2)λ−ndv(z)

satisfies vλ(DIV
n ) = 1. From this, we define for every λ > n−1, theweighted Bergman

spaceA2
λ(D

IV
n ) as the subspace of holomorphic functions that belong to L2(DIV

n , vλ).
As before, this is a closed subspace of L2(DIV

n , vλ) that admits a reproducing kernel.
So that the orthogonal projection, called the Bergman projection, Bλ : L2(DIV

n , vλ) →
A2

λ(D
IV
n ) is given by

Bλ( f )(z) =
∫
DIV

n

f (w)Kλ(z, w)dvλ(w),

for every f ∈ L2(DIV
n , v) and z ∈ DIV

n , where the weighted Bergman reproducing
kernel Kλ : DIV

n × DIV
n → C has the expression (see [25])

Kλ(z, w) = (
1 − 2z�w + (z�z)(w�w)

)−λ
.

In particular, the case λ = n corresponds to the above weightless case. In other words,
v = vn , A2(DIV

n ) = A2
n(D

IV
n ) and K = Kn .

We note that all the measures vλ for λ > n − 1 yield the same null subsets. Hence,
we can consider L∞(DIV

n ) as given for any such measure. For every a ∈ L∞(DIV
n ) we

define the Toeplitz operator with symbol a acting on A2
λ(D

IV
n ) (for λ > n − 1) as the

bounded operator Ta = T (λ)
a ∈ B(A2

λ(D
IV
n )) given by T (λ)

a = Bλ ◦ Ma . In particular,
we have

T (λ)
a ( f )(z) =

∫
DIV

n

a(w) f (w)Kλ(z, w)dvλ(w),

for every f ∈ A2
λ(D

IV
n ) and z ∈ DIV

n .
For a given subspace S ⊂ L∞(DIV

n ), we will denote by T (λ)(S) the unital Banach
algebra generated by Toeplitz operators whose symbols belong to S. In this work
we will consider subspaces S that are self-adjoint in L∞(DIV

n ). From the elementary
properties of Toeplitz operators it follows that if S is self-adjoint, then T (λ)(S) is also
the unital C∗-algebra generated by Toeplitz operators with symbols in S.

2.2 The BergmanMetric of DIV
n

We recall (see [11, 20]) that for any bounded symmetric domain, there is a natu-
rally associated Hermitian metric so that the biholomorphisms act by isometries.
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More precisely, for an n-dimensional bounded symmetric domain D with (weight-
less) reproducing kernel K this Hermitian metric, called the Bergman metric, is given
by

gz = c
n∑

j,k=1

∂2

∂z j∂zk
log K (z, z)dz j ⊗ dzk,

where c > 0 is any conveniently chosen normalizing constant. We will apply this
construction to our domain DIV

n .
In the rest of this work, we will denote by � : DIV

n → C the function given by

�(z) = 1 − 2|z|2 + |z�z|2. (2.3)

In particular, we have Kλ(z, z) = �(z)−λ, for every z ∈ DIV
n and λ > n − 1. It is well

known that this completely determines the weighted Bergman kernels.
The following result is a consequence of the previous remarks and straightforward

computations. Nevertheless, we show some of these computations since they will be
useful latter on.

Proposition 2.1 For the domain DIV
n , the Bergman metric is given by

gz = 1

2n

n∑
j,k=1

∂2

∂z j∂zk
log K (z, z)dz j ⊗ dzk

=
n∑

j,k=1

�(z)
(
δ jk − 2z j zk

) + 2
(
z j − z j (z�z)

)(
zk − zk(z�z)

)
�(z)2

dz j ⊗ dzk,

for every z ∈ DIV
n .

Proof In the first place we have

∂

∂z j
log K (z, z) = −n

∂

∂z j
log�(z) = − n

�(z)

∂�

∂z j
(z)

= 2n

�(z)
(z j − z j (z�z)).

And from this it follows that

∂2

∂z j∂zk
log K (z, z) = 2n

∂

∂zk

(
z j − z j (z�z)

�(z)

)

= 2n
�(z)

(
δ jk − 2z j zk

) + 2
(
z j − z j (z�z)

)(
zk − zk(z�z)

)
�(z)2

,

which yields the result. ��

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



102 Page 8 of 41 R. Quiroga-Barranco, M. Seng

We recall some differential geometric notions that will be applied to the domain
DIV

n . We refer to [11, 20] for further details.
If M is a complex manifold with a Hermitian metric g and complex structure J ,

then the associated 2-form ω is given by

ω(X , Y ) = g(J X , Y )

for every pair of smooth vector fields in M . In particular, the 2-form ω defines a non-
degenerate anti-symmetric bilinear form at every point of M . The complex manifold
with the Hermitian metric g is called Kähler if the associated 2-form ω is closed. If
this is the case, ω is a non-degenerate closed 2-form, and M is called a symplectic
manifold with symplectic form ω.

It is well known (see [11, 20]) that any bounded domain with its Bergman metric
is Kähler. We state this in the following result for the domain DIV

n and also give the
explicit expression for the associated symplectic form.

Proposition 2.2 The domainDIV
n with its Bergman metric g as given in Proposition 2.1

is a Kähler manifold. Furthermore, the associated symplectic form is given by

ωz = i
n∑

j,k=1

�(z)
(
δ jk − 2z j zk

) + 2
(
z j − z j (z�z)

)(
zk − zk(z�z)

)
�(z)2

dz j ∧ dzk,

for every z ∈ DIV
n , where �(z) = 1 − 2|z|2 + |z�z|2.

Proof The first claim was already noted above. With our definition of associated sym-
plectic form, the formula in the statement follows from the well known fact (see [20])
that for any Kähler manifold with metric given by

g =
n∑

j,k=1

g jkdz j ⊗ dzk,

the associated symplectic form is given by

ω = i
n∑

j,k=1

g jkdz j ∧ dzk .

��
In the rest of this work we will consider DIV

n both as a Kähler and a symplectic
manifold with the Kähler metric g and the symplectic formω given in Propositions 2.1
and 2.2, respectively. We will also use the well known fact that every biholomorphism
of DIV

n preserves both g and ω (see [11]). In particular, every biholomorphism of DIV
n

is a symplectomorphism of (DIV
n , ω).
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3 The Representation of SO(n) × SO(2) and Commutativity
of C∗-algebras

Wewill describe in this section, the induced action of SO(n)×SO(2) on the Bergman
spaces from the action given in (2.1). First, we will compute natural decompositions
for the Bergman spaces associated to some subgroups of SO(n) × SO(2). This will
occupy the first subsections. Next, in the last subsection, we will consider Toeplitz
operators with invariant symbols for such subgroups and determine in which cases
those operators generate commutative C∗-algebras.

The first thing to note is that a straightforward computation shows that the function
� given in (2.3) is SO(n) × SO(2)-invariant. Clearly, the Lebesgue measure is also
SO(n)×SO(2)-invariant, and so it follows from thedefinition of theweightedmeasures
vλ that these have the same invariance under SO(n)×SO(2). Hence,we easily conclude
the following result. Note that one uses the fact that the SO(n)×SO(2)-action on DIV

n
is complex linear and so holomorphic.

Proposition 3.1 For every λ > n − 1, the action given by

πλ : SO(n) × SO(2) × A2
λ(D

IV
n ) → A2

λ(D
IV
n )

(πλ(A, t) · f )(z) = f (t A−1z)

yields a unitary representation that is continuous in the strong operator topology.

One should compare this representation with the holomorphic discrete series rep-
resentations of the group SO0(n, 2) on the Bergman spaces A2

λ(D
IV
n ). In fact, our

representation πλ is basically the restriction of an holomorphic discrete series rep-
resentation. The only difference is that, in our case, we have dropped a factor given
by a character in SO(2) which is independent of z. This variation does not change
the invariant and irreducible subspaces, but it does simplifies our computations. On
the other hand, these remarks imply the well known continuity claimed at the end of
Proposition 3.1.

In the rest of this section we will describe some decompositions associated to the
representations from Proposition 3.1. Hence, we will recall some basic notation and
refer to standard representation theoretic texts for further details. From now on we
will only consider unitary representations that are continuous in the strong operator
topology.

IfH1 andH2 are two Hilbert spaces that admit unitary representations π1 and π2,
respectively, of a Lie group G, then an intertwining map or a G-equivariant map is a
bounded operator T : H1 → H2 such that

T ◦ π1(g) = π2(g) ◦ T

for every g ∈ G. We say that two such representations are unitary equivalent or
isomorphic over G when there exists an intertwining unitary map from H1 onto H2.
On the other hand, in the case H = H1 = H2 and π1 = π2, we denote by EndG(H)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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the space of intertwining operators H → H. It is easily seen that EndG(H) is a von
Neumann algebra.

For a unitary representation π of a compact group G on a Hilbert space H, a
G-invariant subspace is a closed subspace V ⊂ H so that π(g)(V ) ⊂ V for every
g ∈ G. In this case, V is called irreducible over G (or simply irreducible if the choice
of G is clear) when V does not contain a non-trivial G-invariant subspace. Then,
it is well known (see [3]) that H is the Hilbert direct sum of irreducible subspaces.
Furthermore, one can choose a collection of irreducible representationsπ j : G×Vj →
Vj (necessarily finite dimensional, by the compactness assumption on G), for every
j ∈ A (A some index set) mutually non-isomorphic over G so that the following are
satisfied.

1. The sum of all irreducible subspaces V ⊂ H isomorphic over G to Vj is a closed
non-zero subspace H j .

2. There is a Hilbert direct sum decomposition

H =
⊕
j∈A

H j ,

which is preserved by π(g) for every g ∈ G. This is called the isotypic decompo-
sition of the representation of π (or of G), and the subspaces are called the isotypic
components corresponding to π (or to G).

With the previous notation, we say that an isotypic decomposition is multiplicity-free
when every isotypic component is irreducible.

In the rest of this work, for a subgroup H of SO(n)×SO(2)wewill denote by πλ|H

the unitary representation of H obtained by restricting πλ to H . We will now describe
the isotypic decomposition of πλ|H for some subgroups H of SO(n) × SO(2).

3.1 Isotypic Decomposition for SO(2)

Wewill denote byP(Cn) the space of (holomorphic) polynomials inCn . In particular,
we have P(Cn) ⊂ A2

λ(D
IV
n ) for every λ > n − 1, since the measure vλ is finite in this

case. We will also denote byPm(Cn), for every m ∈ N, the subspace of homogeneous
polynomials of degree m. In particular, we have the algebraic direct sum

P(Cn) =
∞⊕

m=0

Pm(Cn).

On the other hand, it is well known (see [25]) that the space P(Cn) is dense in
A2

λ(D
IV
n ). In fact, this is a property shared by all weighted Bergman spaces over

circled bounded symmetric domains.
We note that for every p ∈ Pm(Cn) and t ∈ SO(2) we have

(πλ(t)p)(z) = t−m p(z) = χ−m(t)p(z),

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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where χ−m(t) = t−m is the character associated to −m. Since the irreducible rep-
resentations of SO(2) are 1-dimensional and determined up to isomorphism by their
character, it follows that the subspaces Pm(Cn), for m ∈ N, are the isotypic compo-
nents of the unitary representationπλ|SO(2). In particular, these subspaces aremutually
orthogonal on every weighted Bergman space.

The previous remarks have proved the following result.

Proposition 3.2 For every λ > n − 1, the isotypic decomposition of πλ|SO(2) is given
by

A2
λ(D

IV
n ) =

∞⊕
m=0

Pm(Cn).

In particular, this isotypic decomposition is not multiplicity-free unless n = 1.

3.2 Isotypic Decomposition for SO(n) × SO(2)

From the definition of πλ it is clear that, for every A ∈ SO(n), the operator πλ(A, 1)
intertwines the representation πλ|SO(2). In symbols, we can write

πλ(SO(n)) ⊂ EndSO(2)(A2
λ(D

IV
n )).

Hence, a straightforward application of Schur’s Lemma implies that the unitary rep-
resentation πλ|SO(n) preserves the Hilbert direct sum

A2
λ(D

IV
n ) =

∞⊕
m=0

Pm(Cn).

A more elementary proof of this claim is obtained by recalling that SO(n) acts lin-
early on DIV

n , and so its action on Bergman spaces preserves polynomials as well as
their degree when they are homogeneous. At any rate, we conclude that the isotypic
decomposition of πλ|SO(n)×SO(2) is given by a Hilbert direct sum that refines the one
given above.

In order to describe the isotypic decomposition for SO(n) × SO(2) we will recall
the basic theory of irreducible representations through the use of weights. We refer to
[11, 14] for further details.

We start by describing some of the fundamentals of roots and root spaces. If U is a
compact semisimple Lie group with Lie algebra u, and T is a maximal torus of U with
Lie subalgebra t0, then we can complexify the objects involved to obtain the so called
roots and root spaces. More precisely, let g = uC = u⊕ iu be the complexification of
u, where i here represents the complex structure associated to such complexification.
Then, t = t0 ⊕ it0 is a Cartan subalgebra of g. For every α ∈ t∗, we denote

gα = {X ∈ g | [H , X ] = α(H)X , for every H ∈ t}.
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A linear functional α is called a root if both α and gα are non-zero. In this case, the
space gα is called a root space. It is a well known fact that every root is real-valued in
the subspace tR = it0, and so we identify the set of roots with their restrictions to tR.
In other words, we consider the roots as elements of t∗

R
. The next step is to introduce

an order, for which one usually considers the lexicographic order with respect to some
basis. Once this is given, a root is called simple if it is not the sum of two positive
roots.

Let us specialize the above information to the case of SO(n). The first object to
consider is a maximal torus of the group SO(n). For this, we denote for ϑ ∈ R the
matrix

R(ϑ) =
(

cos(ϑ) sin(ϑ)

− sin(ϑ) cos(ϑ)

)
. (3.1)

Then, we let Tn be the subgroup of SO(n) consisting of the block diagonal matrices
with size n × n of the form

A(θ) = diag(R(θ1), . . . , R(θ j ), . . . ) (3.2)

with θ ∈ R
	n/2
, and where the diagonal blocks have size 2× 2, except in the case of

n odd where there is a trailing 1 in the diagonal position (n, n). Here we are using the
notation 	x
 for the integer part of a real number x . Then, it is well known that Tn is
a maximal torus of SO(n), and it is clear that dim Tn = 	n/2
. The Lie algebra of Tn

will be denoted by t0. It follows that Tn ×SO(2) is a maximal torus of SO(n)×SO(2)
with Lie algebra t0 × so(2). For the matrix

R(π/2) =
(

0 1
−1 0

)
, (3.3)

the Lie algebra t0 consists of matrices with the form

diag(b1R(π/2), . . . , b j R(π/2), . . . ) (3.4)

with b ∈ R
	n/2
, and where, similarly to the case of Tn , the diagonal blocks have

size 2 × 2, except in the case of n odd where there is a trailing 0 in the diagonal
position (n, n).

The complexification of so(n) is the Lie algebra so(n,C) of anti-symmetric com-
plex n × n matrices. For these choices we obtain by complexification the Cartan
subalgebra t = t0 ⊕ it0 of so(n,C), whose elements are of the form

H(b) = diag(ib1R(π/2), . . . , ib j R(π/2), . . . )

with b ∈ C
	n/2
 and the same sort of restrictions imposed above. With this notation,

we define for every j = 1, . . . , 	n/2
 the linear functional
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e j : t → C

e j (H(b)) = b j .

Note that these yield a basis for t∗ and are real-valued on tR. It is well known that the
set of roots of so(n,C) for this choice of Cartan subalgebra is given in terms of this
basis as follows.

• If n = 2�, then the set of roots consists of the linear functionals e j − ek (1 ≤ j �=
k ≤ �) and ±(e j + ek) (1 ≤ j < k ≤ �).

• If n = 2�+1, then the set of roots consists of the linear functionals ±e j (1 ≤ j ≤
�), e j − ek (1 ≤ j �= k ≤ �) and ±(e j + ek) (1 ≤ j < k ≤ �).

On the other hand, with respect to the lexicographic order induced by the basis given
by the functionals e j , the sets of positive and of simple roots are given as follows.

• If n = 2�, then the set of positive roots consists of the linear functionals e j ± ek

(1 ≤ j < k ≤ �). While the set of simple roots consists of the linear functionals
e1 − e2, . . . , e�−1 − e�, e�−1 + e�.

• If n = 2�+1, then the set of positive roots consists of the linear functionals e j ±ek

(1 ≤ j < k ≤ �) and e j (1 ≤ j ≤ �). While the set of simple roots consists of the
linear functionals e1 − e2, . . . , e�−1 − e�, e�.

Similar constructions can be applied to irreducible representations thus yielding
the notion of weights. We will sketch some facts about the theory of weights for our
case, and refer to the standard literature for further details (see [9, 14]).

Let π : SO(n) → GL(V ) be an irreducible representation, where V is a complex
vector space and GL(V ) is the group of complex linear isomorphisms of V . We
recall that the compactness of SO(n) and the irreducibility of V imply the finite
dimensionality of V , even if we assume that V is Hilbert from the start. Differentiation
yields a representation ρ = dπ : so(n) → gl(V ), in other words an homomorphism of
Lie algebras. By complexifying,we obtain an induced representationρC : so(n,C) →
gl(V ). A linear functional λ ∈ t∗ is called a weight if the subspace

Vλ = {v ∈ V | ρC(X)v = λ(X)v, for every X ∈ t}

is non-zero, in which case Vλ is called a weight space, both corresponding to the
representation on V given by either π or ρC. Let us denote by �V the set of weights
for the irreducible module V . It is very well known that the elements of �V restricted
to tR are real-valued and, as with the roots, we will denote such restrictions with the
same symbols. In particular, �V is considered as a subset of t∗

R
and so we can use the

order of the latter. More precisely, for any two μ1, μ2 ∈ �V we consider the order
given by

μ1 ≺ μ2 ⇐⇒ μ2 − μ1 = α1 + · · · + αk

for some α1, . . . , αk positive roots. It follows from representation theory that any
(finite-dimensional) irreducible representation V as above admits a unique highest
weight and any two such representations are isomorphic, as SO(n)-modules, if and
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only if their highest weights are the same. Furthermore, the highest weight space is
1-dimensional and any (non-zero) of its elements is called a highest weight vector, In
particular, a highest weight vector for V is well defined up to a constant.

The claims stated above come fromwhat is known as the Highest Weight Theorem,
which also provides a complete description of all elements of t∗

R
that are highest

weights for some irreducible representation (see [14]).
We will use the previous notation and facts to describe the isotypic components for

the representation πλ|SO(n)×SO(2) on Pm(Cn). The main object used to achieve this is
the space of harmonic polynomials that we now introduce. For the rest of this work,
it is useful to keep in mind that z�z = z21 + · · · + z2n , for every z ∈ C

n . This notation
will simplify some of our formulas.

Definition 3.3 Let us define by

∂(z�z) =
n∑

j=1

∂2

∂z2j

the complex holomorphic Laplacian on C
n . A polynomial p(z) ∈ P(Cn) is called

harmonic if it satisfies ∂(z�z)p(z) = 0. The space of all harmonic polynomials is
denoted by H(Cn).

In other words, H(Cn) is the kernel of the linear map ∂(z�z) : P(Cn) → P(Cn).
For such map we clearly have ∂(z�z)(Pm(Cn)) ⊂ Pm−2(Cn), and so it follows that
if we denote by

Hm(Cn) = H(Cn) ∩ Pm(Cn),

the space of harmonic polynomials homogeneous of degree m, then we have an alge-
braic direct sum

H(Cn) =
∞⊕

m=0

Hm(Cn).

The next result is a consequence of the theory found in [9, 14]. We provide a sketch
of the proof whose details can be completed easily from basic representation theory.

Proposition 3.4 Let n ≥ 3, be given. Then, for every m ∈ N, the subspace Hm(Cn)

is an irreducible SO(n)-module with highest weight me1 and highest weight vector
(z1 − i z2)m.

Proof Theorem 5.6.11 from [9] states the required irreducibility for SO(n,C). Hence,
a standard unitary trick argument shows thatHm(Cn) is an irreducible SO(n)-module.

On the other hand, the (straightforward) computations used in the example in page
277 from [14] show that (z1 − i z2)m is a weight vector for the SO(n)-modulePm(Cn)

with weight me1. It is also straightforward to check that (z1 − i z2)m ∈ Hm(Cn), and
so me1 and (z1 − i z2)m are a weight and a weight vector, respectively, for Hm(Cn).
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Finally, Problem 2 in page 339 from [14] proves that the weight me1 is the highest
weight ofHm(Cn). We note that this same Problem 2 also shows the irreducibility of
Hm(Cn) over SO(n). ��

We proceed to describe the main isotypic decomposition of this subsection. We
recall that if G × H is a product of two compact groups and V , W are modules over
G and H , respectively, then V ⊗ W is a G × H -module in a natural way (see [3]).
This is called the outer tensor product of the corresponding modules.

Proposition 3.5 For every λ > n − 1, the isytopic decomposition of the restriction
πλ|SO(n)×SO(2) is given by

A2
λ(D

IV
n ) =

∞⊕
m=0

⊕
k1,k2∈N

k1+2k2=m

Hk1(Cn)(z�z)k2 .

Furthermore, this decomposition satisfies the following properties

1. For every k1, k2 ∈ N, the subspace Hk1(Cn)(z�z)k2 is an irreducible SO(n)-
module isomorphic to Hk1(Cn), and so its highest weight is k1e1. A highest weight
vector is given by (z1 − i z2)k1(z�z)k2 .

2. For every k1, k2 ∈ N, the subspace Hk1(Cn)(z�z)k2 is an irreducible module
over SO(n) × SO(2) isomorphic to the outer tensor product Hk1(Cn) ⊗ Ck1+2k2 ,
where Ck1+2k2 is the 1-dimensional SO(2)-module defined by the character
χ−(k1+2k2)(t) = t−(k1+2k2).

3. The decomposition is multiplicity-free.

Proof First we note that, by the very definition of both SO(n) and z�z, every poly-
nomial of the form (z�z)m is SO(n)-invariant for every m ∈ N. Hence, for every
k1, k2 ∈ N, the assignment

Hk1(Cn) → Hk1(Cn)(z�z)k2

p(z) 
→ p(z)(z�z)k2

clearly defines a linear mapwhich is SO(n)-equivariant for the representation πλ|SO(n)

on both spaces. Since this is clearly an isomorphism of vector spaces we conclude that
(1) holds.

Consider the assignment

Hk1(Cn)(z�z)k2 → Hk1(Cn) ⊗ Ck1+2k2

p(z)(z�z)k2 
→ p(z) ⊗ 1.

which is clearly a linear isomorphism. Since (z�z)k2 is SO(n)-invariant, it follows
that this linear map is an isomorphism of SO(n)-modules. On other hand, for every
p(z) ∈ Hk1(Cn) and t ∈ SO(2) we have
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πλ(I , t)(p(z)(z�z)k2) = t−(k1+2k2) p(z)(z�z)k2

(I , t) · p(z) ⊗ 1 = p(z) ⊗ t−(k1+2k2) = t−(k1+2k2)(p(z) ⊗ 1),

and so the last assignment is SO(2)-equivariant as well. We conclude that such assign-
ment is an isomorphism of SO(n) × SO(2)-modules. This proves (2).

By Problem 11 in page 271 from [14] we have a direct sum decomposition of vector
spaces

Pm(Cn) =
⊕

k1+2k2=m

Hk1(Cn)(z�z)k2

for every m ∈ N. Furthermore, by (2) this is a direct sum of mutually non-isomorphic
irreducible SO(n)×SO(2)-modules, and so the direct sum is orthogonal for the inner
product of any Bergman spaceA2

λ(D
IV
n ), for λ > n − 1. By the density of the polyno-

mials in Bergman spaces, we have the required Hilbert direct sum decomposition

A2
λ(D

IV
n ) =

∞⊕
m=0

⊕
k1,k2∈N

k1+2k2=m

Hk1(Cn)(z�z)k2 .

Finally, it follows from (2) that any two terms of such sumaremutually non-isomorphic
over SO(n) × SO(2). This shows (3) and completes the proof. ��

We remark that the information about highest weight vectors given above can also
be found in [13].

3.3 Isotypic Decomposition for SO(n − 1) × SO(2)

Let us consider the canonical upper left corner embedding of SO(n−1) as a subgroupof
SO(n). In particular, the group SO(n−1)×SO(2) has a unitary representation on every
Bergman space A2

λ(D
IV
n ) by restriction of πλ. The Hilbert direct sum decomposition

ofA2
λ(D

IV
n ) from Proposition 3.5 is SO(n)×SO(2)-invariant and so it is SO(n −1)×

SO(2)-invariant as well. However, the terms of such decomposition may no longer be
irreducible when considered as SO(n −1)×SO(2)-modules, but they will rather have
a direct sum decomposition into irreducible SO(n − 1) × SO(2)-submodules.

For the subgroup SO(n − 1) ⊂ SO(n) it is well known how to decompose every
irreducible SO(n)-module as a direct sum of irreducible SO(n−1)-submodules. State-
ments that provide such decompositions are known as branching rules, and they are
often given by describing the submodules in terms of highest weights. For our case,
the most general classical result is the Branching Theorem of Murnaghan (see Theo-
rem 9.16 from [14]). A particular case of such branching theorem together with our
Proposition 3.4 yields the next result.
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Proposition 3.6 Let n ≥ 4 be given. Then, for every m ∈ N, the subspace Hm(Cn)

considered as a module over SO(n − 1) satisfies

Hm(Cn) �
m⊕

j=0

H j (Cn−1)

where each spaceH j (Cn−1) is considered as aSO(n−1)-module and the isomorphism
holds over SO(n − 1). Hence, this decomposition is multiplicity-free.

We can now use Propositions 3.5 and 3.6 to obtain the isotypic decomposition for
the group SO(n − 1) × SO(2). In what follows we will denote by 	m
2 the parity of
m ∈ N, where the latter is defined as either 0 or 1 according to whether m is even
or odd, respectively. We will also use the expression kV to denote the direct sum
of k copies of V , where k ∈ N and V is an irreducible module over some compact
group. As before, Cm denotes the 1-dimensional SO(2)-module corresponding to the
character χ−m(t) = t−m .

Proposition 3.7 Let n ≥ 4 be given. Then, for every λ > n − 1, the isotypic decom-
position of πλ|SO(n−1)×SO(2) is given by the following isomorphism of modules over
SO(n − 1) × SO(2).

A2
λ(D

IV
n ) �

∞⊕
m=0

m⊕
r=0

(⌊
m

2

⌋
−

⌊
r + 	m + 1
2

2

⌋
+ 1

)
Hr (Cn−1) ⊗ Cm .

In particular, this decomposition is not multiplicity-free.

Proof The isotypic decomposition required is necessarily SO(2)-invariant, and so it
is some refinement of the decomposition obtained in Proposition 3.2. In particular, it
is enough to obtain the isotypic decomposition of Pm(Cn) by restricting from SO(n)

to SO(n − 1), for which we will use Proposition 3.6.
First we can use the proof of Propositions 3.5 to conclude that for every m ∈ N we

have the following identities and isomorphisms of modules over SO(n − 1) × SO(2)

Pm(Cn) =
⊕

k1,k2∈N
k1+2k2=m

Hk1(Cn)(z�z)k2

�
	m/2
⊕
k=0

Hm−2k(Cn) ⊗ Cm

�
	m/2
⊕
k=0

m−2k⊕
r=0

Hr (Cn−1) ⊗ Cm,

where we have used Proposition 3.6 in the last isomorphism. The isotypic decompo-
sition is now obtained by counting how many times each subspace Hr (Cn−1) ⊗ Cm

appears.
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For m = 2� even, there are � + 1 terms in the second line above, and these are:
H2�(Cn)⊗Cm, . . . ,H0(Cn)⊗Cm . Each such termcontains a copy ofH0(Cn−1)⊗Cm ,
for a total of �+1 occurrences. But only the first � terms contain copies ofH1(Cn−1)⊗
Cm andH2(Cn−1)⊗Cm , which gives � occurrences. In general, for every j ≥ 1, there
is a single copy of each of the termsH2 j−1(Cn−1)⊗Cm andH2 j (Cn−1)⊗Cm inside
of each of the subspacesH2�(Cn) ⊗Cm, . . . ,H2 j (Cn) ⊗Cm , which yields � − j + 1
occurrences. We now observe that for r = 2 j, 2 j − 1 we have

j =
⌊

r + 1

2

⌋
=

⌊
r + 	m + 1
2

2

⌋

since m = 2� is even. Hence, the result follows in this case.
For the case m = 2�+ 1, a similar argument shows that, for every j ≥ 0, the terms

H2 j (Cn−1)⊗Cm andH2 j+1(Cn−1)⊗Cm have exactly �− j + 1 occurrences. Since
now m = 2� + 1 is odd, we now have for r = 2 j, 2 j + 1 that

j =
⌊

r

2

⌋
=

⌊
r + 	m + 1
2

2

⌋
.

Hence, the result follows as well in this case. ��

3.4 Isotypic Decomposition for Tn × SO(2)

Recall that Tn × SO(2) denotes the maximal torus of SO(n) × SO(2) introduced
in Sect. 3.2, which has dimension 	n/2
 + 1. Its irreducible representations are 1-
dimensional and completely described in terms of characters. As before, the isotypic
decomposition for the group Tn × SO(2) is a refinement of the one given in Proposi-
tion 3.2. Furthermore, it is enough to obtain the decomposition of each of the subspaces
Pm(Cn) with respect to the Tn-action.

The subspacePm(Cn) has a natural basis given by the monomials zα where α ∈ N
n

is such that |α| = m. We will replace this basis by another obtained from a linear
change of coordinates. More precisely, we have the following basis for every subspace
Pm(Cn).

1. If n = 2� is even, then a basis for Pm(Cn) is given by the polynomials

qα,β(z) =
�∏

j=1

(z2 j−1 − i z2 j )
α j (z2 j−1 + i z2 j )

β j

where α, β ∈ N
� satisfy |α| + |β| = m.

2. If n = 2� + 1 is odd, then a basis for Pm(Cn) is given by the polynomials

qα,β,γ (z) =
�∏

j=1

(z2 j−1 − i z2 j )
α j (z2 j−1 + i z2 j )

β j zγ

2�+1 = qα,β(z′)zγ

2�+1
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where z′ is obtained from z by removing the last coordinate, and α, β ∈ N
�, γ ∈ N

satisfy |α| + |β| + γ = m.

A straightforward computation (see the proof of Proposition 3.4 as well as page
277 from [14]) shows that for n = 2� and every θ ∈ R

� we have

A(θ) · qα,β(z) = ei(β−α)·θqα,β(z)

for everyα, β ∈ N
�, where A(θ) ∈ Tn is given as in Eq. (3.2).We conclude that qα,β(z)

is a weight vector for the Tn-action corresponding to the character χβ−α(t) = tβ−α

under the natural isomorphism Tn � T
� given by the identification (2.2). From the

above remarks it follows that for the case of n = 2�+1 a corresponding property holds
as well. More precisely, qα,β,γ (z) is a weight vector for the Tn-action corresponding
to the character χβ−α(t) = tβ−α , again for the natural isomorphism Tn � T

�.
On the other hand, SO(2) acts on every subspacePm(Cn)by the characterχ−m(t) =

t−m . Hence, we obtain the next result. Recall our assumption n ≥ 3.

Proposition 3.8 Let us identify the maximal torus Tn × SO(2) of the group SO(n) ×
SO(2) with T

�+1 through the isomorphism obtained from (2.2), where � = 	n/2
.
Then, for every λ > n − 1, the following decompositions into irreducible modules
over Tn × SO(2) hold.

1. For n = 2� even we have

A2
λ(D

IV
n ) =

∞⊕
m=0

⊕
α,β∈N�

|α|+|β|=m

Cqα,β(z),

where two terms Cqα,β(z) and Cqα′,β ′(z) are isomorphic over Tn × SO(2) if and
only if |α| + |β| = |α′| + |β ′| and α − β = α′ − β ′.

2. For n = 2� + 1 odd we have

A2
λ(D

IV
n ) =

∞⊕
m=0

⊕
α,β∈N�,γ∈N
|α|+|β|+γ=m

Cqα,β,γ (z),

where two terms Cqα,β,γ (z) and Cqα′,β ′,γ ′(z) are isomorphic over Tn × SO(2) if
and only if |α| + |β| + γ = |α′| + |β ′| + γ ′ and α − β = α′ − β ′.

Hence, for both cases the isotypic decompositions are not multiplicity-free.

Proof The direct sum decomposition and the Tn ×SO(2)-invariance of the terms was
proved above. The characterization of the isomorphism type also follows from the
previous discussion since two terms are isomorphic over Tn ×SO(2) if and only if they
are isomorphic over both Tn and SO(2). The last claim follows from the assumption
n ≥ 3. ��
Remark 3.9 We observe that for n = 3, the maximal torus T3 of SO(3) is the subgroup
SO(2) with its canonical upper-left corner embedding. Hence, the case n = 3 not
considered in Proposition 3.7 is now included as part of Proposition 3.8.
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3.5 C∗-algebras Generated by Toeplitz Operators with Invariant Symbols

For every closed subgroup H ⊂ SO(n) × SO(2) there is a natural action of H on
L∞(DIV

n ) given by

h · a = a ◦ h−1,

where a ∈ L∞(DIV
n ) and h ∈ H . A symbol a ∈ L∞(DIV

n ) is called H -invariant
if it is fixed with respect to this action. We will denote by L∞(DIV

n )H the subspace
of all essentially bounded H -invariant symbols. Note that this subspace is clearly
self-adjoint.

The next result follows from a straightforward computation (see [5]) and our pre-
vious definitions.

Proposition 3.10 Let H ⊂ SO(n) × SO(2) be a closed subgroup. Then, for every
λ > n − 1 and a ∈ L∞(DIV

n ) we have

T (λ)
h·a = πλ(h) ◦ T (λ)

a ◦ πλ(h)−1

for every h ∈ H. In particular, the symbol a is H-invariant if and only if T (λ)
a inter-

twines the representation πλ|H . Furthermore, we have

T (λ)(L∞(DIV
n )H ) ⊂ EndH (A2

λ(D
IV
n )),

for every λ > n − 1.

We now obtain a result that can be considered as providing a correspondence
between multiplicity-free restrictions of πλ and commutative C∗-algebras generated
by Toeplitz operators with invariant symbols. This result is similar to Theorem 6.4
from [5], but we require an additional condition which is enough for our purposes.
We provide a sketch of the proof, based on the arguments from [5], for the sake of
completeness.

Theorem 3.11 Let H ⊂ SO(n) × SO(2) be a closed subgroup such that the isotypic
components of πλ|H are finite dimensional. Then, for every λ > n − 1 the following
conditions are equivalent.

1. The restriction πλ|H is multiplicity-free.
2. The von Neumann algebra EndH (A2

λ(D
IV
n )) is commutative.

3. The C∗-algebra T (λ)(L∞(DIV
n )H ) is commutative.

Proof Consider the isotypic decomposition for πλ|H given by

A2
λ(D

IV
n ) =

⊕
j∈A

H j ,

where H j is an isotypic component.
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If (1) holds, then each subspaceH j is irreducible over H . An application of Schur’s
lemma shows that for every T ∈ EndH (A2

λ(D
IV
n )) we have T (H j ) ⊂ H j for every

j ∈ A. Furthermore, we can also conclude that for such a T we have T |H j = c j IH j

for some c j ∈ C and every j ∈ A. Hence, the commutativity of EndH (A2
λ(D

IV
n )) is

immediate, thus showing (2). On the other hand, (2) clearly implies (3) by Proposi-
tion 3.10.

If the isotypic decomposition above is not multiplicity-free, then for some j ∈ A
there exists U , V ⊂ H j isomorphic irreducible H -modules such that U ∩ V = 0. If
we choose T0 : U → V any isomorphism over H , then for any matrix A ∈ M2×2(C)

with entries

A =
(

a b
c d

)

the map given by

T̂A : U ⊕ V → U ⊕ V

u + v 
→ au + bT −1
0 (v) + cT0(u) + dv,

where u ∈ U and v ∈ V , intertwines the H -action. This map can be extended to an
element TA ∈ EndH (A2

λ(D
IV
n )) as 0 on the orthogonal complement ofU ⊕V . It is easy

to see that the assignment A 
→ TA defines an injective homomorphism of algebras
from M2×2(C) into EndH (A2

λ(D
IV
n )), thus showing that the latter is not commutative.

This proves that (2) implies (1).
Finally, to prove that (3) implies (1), we assume that πλ|H is not multiplicity-free.

Hence, in the notation above, there exists an isotypic component H j which is not
irreducible but, by assumption, it is finite dimensional. In particular, for some m ≥ 2
we have EndH (H j ) � Mm×m(C) as C∗-algebras. Choose some non-normal element
Mm×m(C), denote by T the corresponding element in EndH (H j ) and extend it by 0 on
the rest of the isotypic components to obtain a non-normal element in EndH (A2

λ(D
IV
n ))

which we will also denote by T . Using the averaging techniques of Section 6 from [5]
we can find a symbol a ∈ L∞(DIV

n )H such that

〈T f , g〉λ = 〈T (λ)
a f , g〉λ

for every f , g ∈ H j (see the proof of Proposition 6.2 from [5]). SinceH j is invariant
under any element from EndH (A2

λ(D
IV
n )) it follows that

T |H j = T (λ)
a |H j , T ∗|H j = (T (λ)

a )∗|H j ,

thus proving that T (λ)
a ∈ T (λ)(L∞(DIV

n )H ) is not normal. Since the algebra
T (λ)(L∞(DIV

n )H ) is a C∗-algebra, it follows that it is not commutative. Hence, (3)
implies (1). ��
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We apply the previous criterion to the subgroups of SO(n) × SO(2) whose iso-
typic decompositions were computed in the previous subsections. More precisely, the
next result is a consequence of Theorem 3.11, Propositions 3.2, 3.5, 3.7 and 3.8 and
Remark 3.9.

Theorem 3.12 Assume that n ≥ 3. Then, for every λ > n − 1, and for the subgroups
specified, the following commutativity properties hold.

1. The C∗-algebra T (λ)(L∞(DIV
n )SO(n)×SO(2)) is commutative.

2. For H either of the subgroups SO(n − 1) × SO(2), Tn × SO(2) or SO(2), the
C∗-algebra T (λ)(L∞(DIV

n )H ) is not commutative.

Remark 3.13 If H1 ⊂ H2 are subgroups of SO(n) × SO(2), then we clearly have

L∞(DIV
n )H2 ⊂ L∞(DIV

n )H1

and correspondingly we have the inclusion

T (λ)(L∞(DIV
n )H2) ⊂ T (λ)(L∞(DIV

n )H1).

In other words, both the invariance of symbols and the C∗-algebra generated by
Toeplitz operators with invariant symbols reverse inclusion with respect to the sub-
group considered. In Theorem 3.12, the largest subgroup considered is SO(n)×SO(2),
which yields the smallest and only (in the statement) commutativeC∗-algebra through
invariant symbols. The smallest subgroup in that result is SO(2) for which we obtain
the largest of the C∗-algebras considered and it is non-commutative.

The subgroups in between, SO(n − 1) × SO(2) and Tn × SO(2), provide invariant
symbols that yield non-commutativeC∗-algebras. And there are some interesting facts
about these cases.

The subgroup Tn × SO(2) is a maximal Abelian subgroup of the biholomorphism
group of DIV

n . As noted in [22, 23], every maximal Abelian subgroup of the biholo-
morphism group of the unit ball Bn yields invariant symbols whose Toeplitz operators
generate commutative C∗-algebras. Hence, the previously observed behavior for the
unit ball does not extend to the domain DIV

n . We recall that the unit ball has rank 1 and
the domain DIV

n has rank 2 for every n ≥ 2.

Lemma 3.14 For every n ≥ 3, the subgroupSO(n−1)×SO(2) is a maximal connected
subgroup of SO(n) × SO(2).

Proof We note that it is enough to show that SO(n − 1) is a maximal connected
subgroup of SO(n) whenever n ≥ 3. In the notation of [11], and for the embedding
SO(n − 1) ⊂ SO(n) considered, the pair (SO(n),SO(n − 1)) is an irreducible Rie-
mannian symmetric pair since the corresponding quotient yields the sphere Sn−1, an
irreducible symmetric space of compact type for n ≥ 3. Hence, Proposition 5.1 in
Chapter VIII from [11] implies the maximality of SO(n − 1) in SO(n). ��

As a consequence of Theorem 3.12 and Lemma 3.14 we obtain the following result.
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Corollary 3.15 For n ≥ 3, the subgroup SO(n − 1) × SO(2) is a maximal connected
subgroup of SO(n) × SO(2) such that T (λ)(L∞(DIV

n )SO(n)×SO(2)) is commutative but
T (λ)(L∞(DIV

n )SO(n−1)×SO(2)) is non-commutative, for every λ > n − 1.

Remark 3.16 As noted in Remark 3.13, there exist maximal Abelian subgroups of
the group of biholomorphisms of DIV

n whose corresponding invariant symbols yield
Toeplitz operators that generate non-commutative C∗-algebras. In fact, the subgroup
Tn × SO(2) is maximal Abelian in SO(n) × SO(2), and we proved that, through
invariance, the latter yields commutative C∗-algebras, but the former does not.

We might try to relax the conditions to obtain commutativity. For example, instead
of considering maximal Abelian subgroups we may consider maximal connected sub-
groups, whether Abelian or not. However, Corollary 3.15 proves the existence of
a maximal connected subgroup of SO(n) × SO(2) whose invariant symbols yield
Toeplitz operators that generate a non-commutative C∗-algebra.

On the other hand, we note that Tn , our maximal torus for SO(n), is contained in
SO(n − 1) if and only if n is odd. It is precisely in this case that we have the inclusion
Tn ×SO(2) ⊂ SO(n −1)×SO(2). Hence, for n odd, SO(n −1)×SO(2) is a maximal
connected subgroup of the group SO(n)×SO(2) that furthermore contains a maximal
toral subgroup. So not even both of these conditions, are enough to yield commutative
C∗-algebras.

Note however, that we have made no attempt to list the maximal connected sub-
groups of SO(n) × SO(2). But, we did exhibit such a subgroup for which we obtain
a non-commutative C∗-algebra generated by Toeplitz operators. The problem as to
whether some other maximal connected subgroup of SO(n) × SO(2) yields commu-
tative C∗-algebras through invariance remains open in general.

Remark 3.17 In dimension n = 4, there is one known case for which we do obtain
commutative C∗-algebras generated by Toeplitz operators from invariance of symbols
with respect to a maximal connected subgroup of the isotropy group of the origin. This
is a consequence of the results from [6] and we now proceed to explain it together
with its relation to our current work.

We recall from Sect. 2 that the domain DIV
4 is biholomorphically equivalent to

DI
2×2, in accordance to the isomorphism so(4, 2) � su(2, 2). For the domain DI

2×2,
the maximal compact subgroup of biholomorphisms that fix the origin is realized by
the group S(U(2) ×U(2)). With the diagonal embedding T2 ⊂ U(2), a natural maxi-
mal toral subgroup of S(U(2)×U(2)) is given by S(T2×T

2). It is known (see [5]) that,
through the use of invariant symbols, the former groupyields commutativeC∗-algebras
generated by Toeplitz operators, while the latter subgroup yields non-commutative
ones. However, it was proved in [6] that the symbols invariant under the subgroup
S(U(2) ×T

2) yield Toeplitz operators generating commutative C∗-algebras. Further-
more, S(U(2)×T

2) is easily seen to be a maximal connected subgroup of the isotropy
group at the origin S(U(2) × U(2)) (see [6]) and it clearly contains the maximal
toral subgroup S(T2 ×T

2). Through the biholomorphism between DIV
4 and DI

2×2 this
implies the existence of a maximal connected subgroup H of SO(4)×SO(2) contain-
ing a maximal toral subgroup so that the H -invariant symbols yield Toeplitz operators
generating commutative C∗-algebras. This is in clear contrast with Corollary 3.15, so
we explain the nature of this subgroup H .
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The subgroup H can be described as follows through its Lie algebra. For n = 4,
we have the well known isomorphisms

so(4) � so(3) ⊕ so(3) � su(2) ⊕ su(2).

Hence, by using our identification SO(2) � T, the Lie algebras of the isotropy sub-
groups at the origin of DIV

4 and DI
2×2 are related by the isomorphism

so(4) ⊕ so(2) � so(3) ⊕ so(3) ⊕ so(2) � su(2) ⊕ su(2) ⊕ so(2),

and the subgroup S(U(2) × T
2) has Lie subalgebra su(2) ⊕ so(2) ⊕ so(2) naturally

embedded in the third term of the last sequence of isomorphisms. Hence, through
such isomorphisms, the maximal connected subgroup H ⊂ SO(4) × SO(2) has Lie
subalgebra h given by

h = so(3) ⊕ so(2) ⊕ so(2) ⊂ so(3) ⊕ so(3) ⊕ so(2) � so(4) ⊕ so(2).

In particular, H is locally isomorphic to SO(3) × SO(2) × SO(2).
On the other hand, the subgroup SO(3) × SO(2) ⊂ SO(4) × SO(2) considered in

Corollary 3.15 (and throughout this work in general) corresponds, at the Lie algebra
level, to the diagonal embedding

so(3) → so(3) ⊕ so(3) � so(4)

X 
→ (X , X).

This is a consequence of the local equivalence of the pairs of groups (SO(4),SO(3))
and (SO(3) × SO(3),SO(3)) (for the diagonal embedding in the latter) considered
as Riemannian symmetric pairs. Such local equivalence is explained in Example II in
page 240 from [11].

Hence, the fact that SO(4) is not simple allows to have enough room to embedSO(3)
in an alternativemanner to obtain amaximal connected subgroup H of SO(4)×SO(2),
locally isomorphic to SO(3) × SO(2) × SO(2), containing a maximal toral subgroup,
and so that the C∗-algebras T (λ)(L∞(DIV

4 )H ) are commutative for every λ > 3. This
fact further emphasizes our claim in Remark 3.16 that it remains open to consider all
maximal connected subgroups of SO(n) × SO(2).

4 Moment Maps of the Torus Tn × SO(2) and Its Subgroup SO(2)

In this section we will introduce a type of symbol that can be associated to actions
using the symplectic structure of the domain DIV

n . This is achieved through the notion
of moment map, which we will compute for the maximal torus introduced before.

We start by considering a Lie subgroup H of the biholomorphism group of DIV
n

and by h its corresponding Lie algebra. Then, for every X ∈ h there is an associated
1-parameter subgroup of biholomorphisms r 
→ exp(r X) whose orbits in DIV

n we can
differentiate to obtain a vector field on DIV

n as follows
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X �
z = d

dr

∣∣∣
r=0

exp(r X) · z,

for every z ∈ DIV
n . It is a straightforward exercise to show that if X � = (g1, . . . , gn)

as a Cn-valued function, then we have

X � =
n∑

j=1

(
g j

∂

∂z j
+ g j

∂

∂z j

)
. (4.1)

Recall that DIV
n is a Kähler manifold with symplectic form ω given by Proposi-

tion 2.2. We also recall that for a given Lie group H with Lie algebra h, the adjoint
representation of H is a homomorphismAd = AdH : H → GL(h) obtained by differ-
entiating the conjugation (see [11]). This induces a representationAd∗ : H → GL(h∗)
on the dual vector space h∗ given by Ad∗(h) = Ad(h−1)∗, the transpose or dual of
Ad(h−1). Also, we will denote by 〈·, ·〉 the dual evaluation form between h and h∗. We
also recall that, from the remarks at the end of Sect. 2.2, if a group H acts biholomor-
phically on DIV

n , then the H -action preserves the symplectic form ω of this domain.
We now recall the definition of the moment map of a symplectic action for our setup.
We refer to [19] for further details in the general case.

Definition 4.1 Let H be a Lie subgroup of the biholomorphism group of the domain
DIV

n , whose Lie algebra is denoted by h. A moment map for the H -action is a smooth
map μ = μH : DIV

n → h∗ for which the following properties hold.

1. For every X ∈ h, the function μX : DIV
n → R given by

μX (z) = 〈μ(z), X〉

satisfies dμX (u) = ω(X �, u) for every u tangent to DIV
n .

2. The function μ is H -equivariant. In other words, we have

μ(h · z) = Ad∗(h)(μ(z)),

for every h ∈ H and z ∈ DIV
n .

For a given smooth function f : DIV
n → R, the Hamiltonian vector field of f is the

smooth vector field X f that satisfies

d f (u) = ω(X f , u)

for every tangent vector u. This definition generalizes in an obvious manner to any
symplectic manifold. Hence, the first condition given in Definition 4.1 requires the
Hamiltonian vector field of μX to be X �, for every X ∈ h.

We note that if H is Abelian, thenAd is the trivial homomorphism and so the second
condition in Definition 4.1 reduces to requiring the H -invariance of μ in this case.
Furthermore, for H Abelian, the Lie algebra h is isomorphic toRk where k = dim H .
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And we can identify h = R
k through the choice of some basis so that 〈·, ·〉 is precisely

the inner product obtained from the chosen basis.
Let us apply the previous constructions to the maximal torus Tn × SO(2). Its Lie

algebra is givenby t0×so(2) and theLie algebra t0 and its elements havebeendescribed
before in (3.4). Such description provides a natural basis for t0. More precisely, for
� = 	n/2
 and every j = 1, . . . , �, let us denote

X j = diag(0, . . . , R(π/2), . . . , . . . )

the block diagonal matrix with blocks of size 2 × 2, with R(π/2) appearing in the
j-th position and a trailing 0 at the end when n is odd. As before R(π/2) denotes the
matrix defined in (3.3). We also consider the matrix

X�+1 = R(π/2) ∈ SO(2).

Then, the elements X1, . . . , X�+1 yield a basis for the Lie algebra t0 × so(2). In the
rest of this work we will identify t0 × so(2) = R

�+1 through this basis. In particular,
we will refer to X1, . . . , X�+1 as the canonical basis of t0×so(2). Note that this yields
the identification between t0 × so(2) and its dual space described above.

We proceed to compute the moment map for the action of Tn × SO(2) on DIV
n . We

start by proving an easy equivalent form to obtain a moment map in this case.

Lemma 4.2 Let � = 	n/2
, and consider the identification t0×so(2) = R
�+1 obtained

from its canonical basis. For a collection of real-valued functions f1, . . . , f�+1 defined
on DIV

n consider the map μ : DIV
n → R

�+1 given by

μ = ( f1, . . . , f�+1) =
�+1∑
j=1

f j X j .

Then, μ is a moment map for the action of Tn × SO(2) if and only if the following
conditions are satisfied for every j = 1, . . . , � + 1

1. d f j = ω(X �
j , ·),

2. f j ◦ t = f j for every t ∈ Tn × SO(2).

Proof Given our current identifications and from the definition of μ we have

μX =
�+1∑
j=1

θ j f j

for every X = θ1X1 + · · · + θ�+1X�+1. Hence, conditions (1) and (2) from our
statement are precisely the conditions from Definition 4.1 for the canonical basis.
Then, the claimed equivalence follows from the linear dependence of μX and X � as
functions of X . ��
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The next step is to compute the vector fields on DIV
n associated to the elements of

t0 × so(2).

Lemma 4.3 Let � = 	n/2
, and consider the identification t0×so(2) = R
�+1 obtained

from its canonical basis. For every X ∈ t0 × so(2) of the form

X =
�+1∑
j=1

θ j X j

the induced vector field X � on DIV
n is given by

X �
z =

�∑
j=1

θ j

(
z2 j

∂

∂z2 j−1
− z2 j−1

∂

∂z2 j
+ z2 j

∂

∂z2 j−1
− z2 j−1

∂

∂z2 j

)

+iθ�+1

n∑
j=1

(
z j

∂

∂z j
− z j

∂

∂z j

)
,

for every z ∈ DIV
n . In particular, we have for every j = 1, . . . , �

X �
j (z) = z2 j

∂

∂z2 j−1
− z2 j−1

∂

∂z2 j
+ z2 j

∂

∂z2 j−1
− z2 j−1

∂

∂z2 j

and also

X �
�+1(z) = i

n∑
j=1

(
z j

∂

∂z j
− z j

∂

∂z j

)
,

for every z ∈ DIV
n .

Proof We will follow the notation from Sect. 3. In particular, we will use the expres-
sions given by (3.1) and (3.2).

As it is well known, we have exp(ϑ R(π/2)) = R(ϑ), for every ϑ ∈ R. Hence, for
every θ ∈ R

�+1 the element X of t0 × so(2) given by

X =
�+1∑
j=1

θ j X j

satisfies for every r ∈ R

exp(r X) = (A(rθ ′), eirθ�+1),
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where θ ′ is obtained from θ by removing the last component. It follows that for
n = 2� + 1 odd, we have

exp(r X) · z = eirθ�+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 cos(rθ1) + z2 sin(rθ1)

−z1 sin(rθ1) + z2 cos(rθ1)
...

z2 j−1 cos(rθ j ) + z2 j sin(rθ j )

−z2 j−1 sin(rθ j ) + z2 j cos(rθ j )
...

z2�−1 cos(rθ�) + z2� sin(rθ�)

−z2�−1 sin(rθ�) + z2� cos(rθ�)

z2�+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for every z ∈ DIV
n . The case of n = 2� even is obtained from this expression by

removing the last coordinate. Hence, we conclude the result by differentiating the
previous expression with respect to r at 0 and applying (4.1). ��

The next result yields a moment map for the action of Tn × SO(2).

Theorem 4.4 For every n ≥ 3, and with respect to the identification t0×so(2) = R
�+1,

where � = 	n/2
, a moment map for the action of Tn × SO(2) on DIV
n is given by

μ = μTn×SO(2) : DIV
n → R

�+1

μ(z) = 1

�(z)

�∑
j=1

i(z2 j−1z2 j − z2 j−1z2 j )e j + |z�z|2 − |z|2
�(z)

e�+1,

for every z ∈ DIV
n , where e1, . . . , e�+1 is the canonical basis of R�+1, and �(z) =

1 + |z�z|2 − 2|z|2.

Proof Let us consider the functions f j : DIV
n → R, for j = 1, . . . , � + 1, given by

f j (z) = i(z2 j−1z2 j − z2 j−1z2 j )

�(z)
, for j = 1, . . . , �,

f�+1(z) = |z�z|2 − |z|2
�(z)

.

By Lemma 4.2, it is enough to show that these functions are Tn ×SO(2)-invariant and
that

d f j = ω(X �
j , ·),

for every j = 1 . . . , � + 1.
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Let us consider the invariance property. We observe that the expressions �(z) and
|z�z|2 − |z|2 are both invariant under the group Tn × SO(2). Hence, it is enough to
show that the functions defined on DIV

n by

f̂ j (z) = z2 j−1z2 j − z2 j−1z2 j

are Tn × SO(2)-invariant for every j = 1, . . . , �. It is clear that these functions are
SO(2)-invariant. Let us consider A(θ) ∈ Tn for any given θ ∈ R

�. Then, for every
j = 1, . . . , � we have

f̂ j (A(θ)z) = (z2 j−1 cos θ j + z2 j sin θ j )(−z2 j−1 sin θ j + z2 j cos θ j )

− (z2 j−1 cos θ j + z2 j sin θ j )(−z2 j−1 sin θ j + z2 j cos θ j )

= (|z2 j |2 − |z2 j−1|2) cos θ j sin θ j

+ z2 j−1z2 j cos
2 θ j − z2 j−1z2 j sin

2 θ j

+ (|z2 j−1|2 − |z2 j |2) cos θ j sin θ j

− z2 j−1z2 j cos
2 θ j + z2 j−1z2 j sin

2 θ j

= z2 j−1z2 j − z2 j−1z2 j = f̂ j (z),

and so the required invariance follows.
It remains to show that condition (1) from Lemma 4.2 is satisfied by the given

functions. We start by computing the values of the 1-forms ω(X�
j , ·). Without being

explicit about the values of the coefficients g jk obtained in Proposition 2.2, we have

ω(X �
j , ·) = i

n∑
k,l=1

gkldzk ∧ dzl(X �
j , ·),

for every j = 1, . . . , � + 1. After replacing the values of X�
j from Lemma 4.3 we

obtain the following expressions where j = 1, . . . , �

ω(X �
j , ·) =

n∑
k=1

i(z2 j−1gk,2 j (z) − z2 j gk,2 j−1(z))dzk

+
n∑

k=1

i(z2 j g2 j−1,k(z) − z2 j−1g2 j,k(z))dzk, (4.2)

ω(X �
�+1, ·) = −

n∑
k,l=1

(zl gkl(z)dzk + zl glk(z)dzk). (4.3)
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Next, we compute d f j , for every j = 1, . . . , � + 1. In this case we note that from
the proof of Proposition 2.1 we have

glk(z) = ∂

∂zk

(
zl − zl(z�z)

�(z)

)
. (4.4)

From this it follows that for every j = 1, . . . , � and k = 1, . . . , n we have

i(z2 j g2 j−1,k(z) − z2 j−1g2 j,k(z))

= i z2 j
∂

∂zk

(
z2 j−1 − z2 j−1(z�z)

�(z)

)

− i z2 j−1
∂

∂zk

(
z2 j − z2 j (z�z)

�(z)

)

= ∂

∂zk

(
i z2 j

z2 j−1 − z2 j−1(z�z)

�(z)
− i z2 j−1

z2 j − z2 j (z�z)

�(z)

)

= ∂

∂zk

(
i z2 j z2 j−1 − i z2 j−1z2 j

�(z)

)
= ∂ f j

∂zk
(z).

Since f j is real-valued we also have

∂ f j

∂zk
(z) = i(z2 j−1gk,2 j (z) − z2 j gk,2 j−1(z)),

where we have used the Hermitian symmetry of the coefficients gkl . The computation
of these partial derivatives together with (4.2) prove that

d f j = ω(X �
j , ·),

for every j = 1, . . . , �.
For the remaining case, we note that (4.4) yields

−zl glk(z) = ∂

∂zk

(
zl − zl(z�z)

�(z)
(−zl)

)
,

for every k, l = 1, . . . , n. On the other hand, we have

n∑
l=1

zl − zl(z�z)

�(z)
(−zl) =

n∑
l=1

z2l (z
�z) − |zl |2
�(z)

= |z�z|2 − |z|2
�(z)

= f�+1(z).

These computations show that

∂ f�+1

∂zk
(z) = −

n∑
l=1

zl glk(z),
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and since f�+1 is real-valued we also have

∂ f�+1

∂zk
(z) = −

n∑
l=1

zl gkl(z).

Hence, using (4.3) we conclude that

d f�+1 = ω(X �
�+1, ·).

And this completes the proof. ��
We note that the Lie algebra so(2) naturally identifies with R through its basic

element X�+1 defined above. Hence, the computations from Theorem 4.4 together
with Lemma 4.2 yield the next result. The last claim follows from direct inspection.

Corollary 4.5 For every n ≥ 3, and with respect to the identification so(2) = R, a
moment map for the action of SO(2) on DIV

n is given by

μ = μSO(2) : DIV
n → R

μ(z) = |z�z|2 − |z|2
1 + |z�z|2 − 2|z|2 ,

for every z ∈ DIV
n . Furthermore, this moment map is SO(n) × SO(2)-invariant.

5 Toeplitz Operators with Moment Maps Symbols for SO(2)

In this section we consider special symbols obtained from moment maps. The most
general definition that we will use is the following.

Definition 5.1 Let H be an Abelian subgroup of the biholomorphism group of DIV
n .

Assume that H has a moment map μH : DIV
n → h∗, where h∗ is the dual space of the

Lie algebra of H . Then, a moment map symbol for H or aμH -symbol is an essentially
bounded function a ∈ L∞(DIV

n ) for which there is some measurable function f so

that a = f ◦ μH . The space of all such μH -symbols will be denoted by L∞(DIV
n )μ

H
.

5.1 Moment Map Symbols for SO(2) and Commutative C∗-algebras

The main goal of this section, and the work itself, is to construct commutative C∗-
algebras generated by Toeplitz operators from the subgroup SO(2) by using moment
map symbols instead of invariant symbols. In other words, we use μSO(2)-symbols to
obtain commutative C∗-algebras. That is the content of the next result. One should
compare this with Theorem 3.12 where it is proved that SO(2)-invariant symbols do
not yield commuting Toeplitz operators.
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Theorem 5.2 Let n ≥ 3 and λ > n − 1 be arbitrarily given. Then, the C∗-algebra
T (λ)(L∞(DIV

n )μ
SO(2)

) generated by Toeplitz operators with moment map symbols for
SO(2) is commutative. Furthermore, if a = f ◦ μSO(2) is a moment map symbol
for SO(2), then, with the notation from Proposition 3.5, the Toeplitz operator T (λ)

a
preserves the Hilbert direct sum decomposition

A2
λ(D

IV
n ) =

∞⊕
m=0

⊕
k1,k2∈N

k1+2k2=m

Hk1(Cn)(z�z)k2 .

and there exist a sequence (ck1,k2( f , λ))(k1,k2)∈N2 of complex numbers such that

T (λ)
a |Hk1 (Cn)(z�z)k2 = ck1,k2( f , λ)IHk1 (Cn)(z�z)k2 ,

for every (k1, k2) ∈ N
2. In other words, T (λ)

a acts by a multiple of the identity on each
term.

Proof ByCorollary 4.5 themomentmapμSO(2) for the SO(2)-action is invariant under
the action of the group SO(n) × SO(2). It follows that any given symbol of the form
a = f ◦ μSO(2) (a moment map symbol for SO(2)) is SO(n) × SO(2)-invariant. This
implies the inclusion

T (λ)(L∞(DIV
n )μ

SO(2)
) ⊂ T (λ)(L∞(DIV

n )SO(n)×SO(2)),

for every λ > n − 1, and the commutativity of T (λ)(L∞(DIV
n )μ

SO(2)
) follows from

Proposition 3.12.
On the other hand, for the symbol a = f ◦ μSO(2) as above, Proposition 3.10

implies that T (λ)
a intertwines the action of SO(n) × SO(2) and so it preserves the

Hilbert direct sumofA2
λ(D

IV
n ) in our statement, because it is the corresponding isotypic

decomposition obtained in Proposition 3.5. Since such decomposition is multiplicity-
free, the existence of the sequence follows from Schur’s Lemma. ��

In the rest of this work we will compute the coefficients from Theorem 5.2.

5.2 The Jordan Algebra Associated to DIV
n

It is well known that any tube-type bounded symmetric domain has an associated
complex Jordan algebra that one can use to define several analytic and geometric
properties. We refer to [18, 25] for further details on the general theory. For example,
in [7] it was developed a mechanism to compute the kind of coefficients that appear
in Theorem 5.2, and the information needed is given in terms of the associated Jordan
algebra structure. Hence, in this subsection we will compute some of such information
to obtain explicit formulas for the coefficients in Theorem 5.2. We will provide most
of the required proofs, but we refer to [17, 18, 25] for the well known facts.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Commuting Toeplitz Operators on Cartan Domains of Type IV… Page 33 of 41 102

For n ≥ 3, every element x ∈ R
n will be decomposed as

x = x1e1 + x ′

where e1 is the first canonical basis vector and x ′ = (x2, . . . , xn)�. Then,Rn becomes
a Jordan algebra with the product given by

x ◦ y = (x1y1 + x ′ · y′)e1 + (x1y′ + y1x ′). (5.1)

It is clear that e1 is a unit of this Jordan algebra.
As usual, we denote x2 = x ◦ x , for every x ∈ R

n . Then, the cone of positive
elements in Rn is defined by

� = {x2 | x ∈ R
n}◦, (5.2)

the interior of the subset of squares. This cone yields an order≺ inRn given by defining
x ≺ y if and only if y − x ∈ �.

Proposition 5.3 The cone of positive elements of the Jordan algebra R
n satisfies

� = {x ∈ R
n | x1 > 0, x21 − x ′ · x ′}.

Proof By taking interiors it is enough to prove that x is the square of some element if
and only if x1 ≥ 0 and x21 − x ′ · x ′ ≥ 0.

Let us assume that x = y2. Then, we have

x1 = y21 + y′ · y′ ≥ 0

x21 − x ′ · x ′ = (y21 + y′ · y′)2 − 4y21 y′ · y′

= (y21 − y′ · y′)2 ≥ 0.

Conversely, let us consider x ∈ R
n such that x1 ≥ 0 and x21 − x ′ · x ′ ≥ 0. We need

to prove the existence of y ∈ R
n such that y2 = x . This is equivalent to solving for y

the equations

y21 + y′ · y′ = x1, (5.3)

2y1y′ = x ′. (5.4)

If x1 = 0, then we necessarily have x ′ = 0, and a solution to (5.3) and (5.4) is given
by y = 0. If x1 > 0 and x ′ = 0, then a solution is given by y = (

√
x1, 0, . . . , 0)

�.
Hence, we will assume that x1 > 0 and x ′ �= 0. Any solution y must satisfy y1 �= 0.

It follows that replacing y′ = x ′
2y1

, the system of Eqs. (5.3) and (5.4) is equivalent to

4y41 − 4x1y21 + x ′ · x ′ = 0

2y1y′ = x ′.
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We solve for y1 the first of these equations by choosing

y1 =

√√√√ x1 +
√

x21 − x ′ · x ′

2

which is a well defined positive real number by the choice of x . Correspondingly, we
choose

y′ = x ′

2y1
= x ′√

2(x1 +
√

x21 − x ′ · x ′)
.

It is now straightforward to check that for such element y we have y2 = x . ��
The existence and uniqueness of square roots in � is well known. In the next result

we provide an explicit formula for such square roots. Our proof shows the uniqueness
for the sake of completeness.

Corollary 5.4 In the Jordan algebra R
n, for every x ∈ � there exists a unique y ∈ �

such that y2 = x. This solution will be denoted
√

x, and it is given by

√
x =

√√√√ x1 +
√

x21 − x ′ · x ′

2
e1 + x ′√

2(x1 +
√

x21 − x ′ · x ′)
.

Proof For a given x ∈ �, let us consider the element y given in the statement. As
noted in the proof of Proposition 5.3 we have y2 = x . This choice of y clearly satisfies
y1 > 0. We also have

y21 − y′ · y′ =
x1 +

√
x21 − x ′ · x ′

2
− x ′ · x ′

2(x1 +
√

x21 − x ′ · x ′)

=
(x1 +

√
x21 − x ′ · x ′)2 − x ′ · x ′

2(x1 +
√

x21 − x ′ · x ′)

=
x21 − x ′ · x ′ + x1

√
x21 − x ′ · x ′

x1 +
√

x21 − x ′ · x ′

= x1

√
x21 − x ′ · x ′ > 0.

Hence, it follows from Proposition 5.3 that y ∈ �, and so the existence has been
established.
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To establish the uniqueness, we note that it is clear for x ′ = 0. Hence, we will
assume that x ′ �= 0. In this situation, the proof of Proposition 5.3 shows that any
y ∈ R

n such that y2 = x satisfies

y21 =
x1 ±

√
x21 − x ′ · x ′

2
.

If we further assume that y ∈ �, we claim that

y21 �=
x1 −

√
x21 − x ′ · x ′

2
.

Otherwise we would have

y′ = x ′

2y1
= ± x ′√

2(x1 −
√

x21 − x ′ · x ′)
.

Hence, the condition y21 − y′ · y′ > 0 would yield the inequality

x1 −
√

x21 − x ′ · x ′

2
>

x ′ · x ′

2(x1 −
√

x21 − x ′ · x ′)
,

and using that x21 − x ′ · x ′ > 0, this last inequality is easily seen to be equivalent to

√
x21 − x ′ · x ′ > x1 > 0

which is a contradiction. We conclude that any y ∈ � such that y2 = x must satisfy

y21 =
x1 +

√
x21 − x ′ · x ′

2
,

and so we also must have

y1 =

√√√√ x1 +
√

x21 − x ′ · x ′

2
.

This implies that uniqueness holds as well as the formula in the statement. ��
Let us now construct the complex Jordan algebra associated to DIV

n . This will be
basically the complexification of the Jordan algebra structure defined for Rn above.
However, we will require the correct choice of a real form.
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We consider the R-linear map E : Rn → C
n given by

E(x) = x1e1 + i x ′, (5.5)

where we use the notation established before. Then, we clearly have the direct sum
C

n = E(Rn) ⊕ i E(Rn). In other words, E(Rn) is a real form of Cn . Hence, we can
extend the real Jordan algebra structure on R

n to a complex Jordan algebra structure
by complexification. A straightforward computation shows that the corresponding
product on C

n is given by

z ◦ w = (z1w1 − z′ · w′)e1 + (z1w
′ + w1z′). (5.6)

As before, for every element z ∈ C
n , we denote by z′ the vector in C

n−1 obtained
from z by dropping the first coordinate. Also, the real form E(Rn) defines in C

n an
involution z 
→ z∗ given by the conjugation with respect to such real form. A simple
computation shows that we have

z∗ = z1e1 − z′, (5.7)

for every z ∈ C
n .

We will show that Cn with the product and conjugation given above is precisely
the complex Jordan algebra associated to DIV

n through the theory that establishes the
correspondence between tube-type bounded symmetric domains and complex Jordan
algebras. This fact is basically contained in Example 1.5.37 from [25], but we will
sketch its proof below for the sake of completeness. Further details on such corre-
spondence between Jordan structures and bounded symmetric domains can be found
in [17, 18, 25]. We will use some facts and results from these references. We now state
the main correspondence result that we will use, which follows from pages v-viii and
3.6 from [18] (see also Subsection 1.9 and Proposition 1.11 from [17]). The definitions
of the algebraic objects considered in the next results and their proofs can be found in
the references just mentioned.

Proposition 5.5 Let D be a circled bounded symmetric domain inCn with (weightless)
Bergman kernel K D, and consider the coefficients

C jkml = c
∂4 log K D(z, z)

∂z j∂zk∂zm∂zl

∣∣∣∣
z=0

where j, k, m, l = 1, . . . , n and c > 0 is some normalizing constant. Assume that
C

n carries a conjugation v 
→ v∗ from a given real form. If we define on C
n a triple

product by the expression

{uv∗w} =
n∑

j,k,m,l=1

C jkmlu jv
∗
k wmel ,
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for every u, v, w ∈ C
n, then C

n becomes the Jordan pair associated to D. Further-
more, if e ∈ C

n is a maximal tripotent, then the assignment

(z, w) 
→ z ◦ w = 1

2
{ze∗w}

where z, w ∈ C
n, defines a Jordan algebra structure on C

n with unit element e. This
Jordan algebra structure on C

n is the Jordan algebra associated to D.

The previous result allows us to identify the Jordan algebra associated to the domain
DIV

n .

Corollary 5.6 The complex Jordan algebra associated to DIV
n is obtained by endowing

C
n with the product and conjugation given by (5.6) and (5.7).

Proof We choose the normalizing constant c = 1
2n . A lengthy but straightforward

computation shows that the coefficients defined in Proposition 5.5 are given by

C jkml = 2(δ jkδml − δ jmδkl + δkmδ jl).

Note that one can take over fromProposition 2.1 and its proof to obtain this expression.
Another straightforward computation shows that the triple product given in Proposi-
tion 5.5 satisfies

1

2
{ze∗

1w} = 1

2
{ze1w} = (z1w1 − z′ · w′)e1 + (z1w

′ + w1z′).

Finally, it is easy to prove that e1 is maximal tripotent (see Example 1.5.69 from [25]).
Hence, the result follows from Proposition 5.5. ��

5.3 Spectral Integral Formulas for Moment Map Symbols for SO(2)

We will now apply one of the main results from [7] to our setup to obtain explicit
expressions for the coefficients from Theorem 5.2. The next result is a restatement of
Theorem 4.11 from [7] for the domain DIV

n adapted to our current notation.

Theorem 5.7 Let n ≥ 3 and λ > n − 1 be given. For any symbol a ∈ L∞(DIV
n ) which

is SO(n) × SO(2)-invariant the Toeplitz operator T (λ)
a preserves the Hilbert direct

sum decomposition from Proposition 3.5, and for every (k1, k2) ∈ N
2 there exists a

constant ck1,k2(a, λ) ∈ C such that

T (λ)
a |Hk1 (Cn)(z�z)k2 = ck1,k2(a, λ)IHk1 (Cn)(z�z)k2 .
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Furthermore, we have

ck1,k2(a, λ)

=

∫
�∩(e1−�)

a(E(
√

x))p1(E(x))k1 p2(E(x))k2 p2(e1 − E(x))λ−ndx

∫
�∩(e1−�)

p1(E(x))k1 p2(E(x))k2 p2(e1 − E(x))λ−ndx

=

∫
�∩(e1−�)

a(E(
√

x))(x1 + x2)
k1(x21 − x ′ · x ′)k2((1 − x1)

2 − x ′ · x ′)λ−ndx

∫
�∩(e1−�)

(x1 + x2)
k1(x21 − x ′ · x ′)k2((1 − x1)

2 − x ′ · x ′)λ−ndx
,

for every (k1, k2) ∈ N
2, where p1(z) = z1 − i z2 and p2(z) = z�z.

Proof We mainly need to compare the notation from [7] with ours with respect to
Theorem 4.11 of that reference. This will be done exclusively for the case of the
domain DIV

n .
In the first place, the results from [7] consider the polynomials that yield the highest

weight vectors for the isotypic decomposition in Proposition 3.5. In our case, these are
precisely p1(z)k1 p2(z)k2 , where (k1, k2) ∈ N

2, and in [7] these are parameterized as
p1(z)α1−α2 p2(z)α2 , where α ∈ N

2 satisfies α1 ≥ α2. A standard change of parameter
show these to be equivalent.

On the other hand, Theorem4.11 from [7] considers the positive cone in the complex
Jordan algebra associated to the domainDIV

n . The latter has been proved to be precisely
the one described in Corollary 5.6. This complex Jordan algebra and its positive cone
are related to the Jordan algebra Rn and its corresponding cone (given by (5.1) and
(5.2), respectively) through the map E given by (5.5). Hence, the first integral formula
in the statement is equivalent to that in Theorem4.11 from [7] by the change of variable
E , which clearly preserves the Lebesgue measure. Note that we have used that E fixes
e1.

Hence, the second integral formula follows by substitution. ��

Remark 5.8 Let us consider x ∈ �. Then, Corollary 5.4 implies that

E(
√

x) =

√√√√ x1 +
√

x21 − x ′ · x ′

2
e1 + i

x ′√
2(x1 +

√
x21 − x ′ · x ′)

.
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From this a simple computation yields

|E(
√

x)|2 =
x1 +

√
x21 − x ′ · x ′

2
+ x ′ · x ′

2(x1 +
√

x21 − x ′ · x ′)
= x1,

E(
√

x)�E(
√

x) =
x1 +

√
x21 − x ′ · x ′

2
− x ′ · x ′

2(x1 +
√

x21 − x ′ · x ′)

=
√

x21 − x ′ · x ′.

It follows that for every x ∈ � the following sequence of equivalences hold

E(
√

x) ∈ DIV
n ⇐⇒ |E(

√
x)|2 < 1, 2|E(

√
x)|2 < |E(

√
x)�E(

√
x)|2 + 1

⇐⇒ 0 < x1 < 1, 2x1 < x21 − x ′ · x ′ + 1

⇐⇒ 0 < x1 < 1, x ′ · x ′ < (1 − x1)
2

⇐⇒ x ∈ � ∩ (e1 − �).

This precisely yields the elements x ∈ R
n over which the integral from Theorem 5.7

is taking place. With the order defined by the cone �, this condition can be rewritten
as 0 ≺ x ≺ e1.

The next result provides the spectral integral formulas for the Toeplitz operators
with moment map symbols for SO(2).

Theorem 5.9 For every n ≥ 3 and λ > n − 1, let a = f ◦ μSO(2) ∈ L∞(DIV
n ) be a

moment map symbol for SO(2). Then, the Toeplitz operator T (λ)
a preserves the Hilbert

direct sum decomposition from Proposition 3.5, and for (k1, k2) ∈ N
2 this operator

acts on Hk1(Cn)(z�z)k2 by a constant ck1,k2( f , λ) ∈ C given by

ck1,k2( f , λ)

=

∫
0≺x≺e1

f

(
x ′ · x ′

|x |2 − 1

)
(x1 + x2)

k1(x21 − x ′ · x ′)k2((1 − x1)
2 − x ′ · x ′)λ−ndx

∫
0≺x≺e1

(x1 + x2)
k1(x21 − x ′ · x ′)k2((1 − x1)

2 − x ′ · x ′)λ−ndx
.

Proof We observe that for every x satisfying 0 ≺ x ≺ e1 and from Remark 5.8 we
have

μSO(2)(E(
√

x)) = |E(
√

x)�E(
√

x)|2 − |E(
√

x)|2
1 + |E(

√
x)�E(

√
x)|2 − 2|E(

√
x)|2

= x21 − x ′ · x ′ − x21
1 + x21 − x ′ · x ′ − 2x21

= x ′ · x ′

|x |2 − 1
.
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Hence, the result follows from Theorem 5.7. ��
Remark 5.10 One should compare the integral formulas obtained for SO(n)×SO(2)-
invariant symbols andμSO(2)-symbols obtained in Theorems 5.7 and 5.9, respectively.
In view of the expression for E(

√
x) from Remark 5.8, the formula obtained for a

μSO(2)-symbol is much more simple. This highlights the fact that the coordinates
implicit in the use of moment maps and symplectic geometric are much more well
adapted to the analysis of Bergman spaces and their Toeplitz operators.
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